10 62: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n76]], [[K11n78]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 72: | ||
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{25}-2 q^{24}+q^{23}+3 q^{22}-7 q^{21}+5 q^{20}+5 q^{19}-16 q^{18}+13 q^{17}+7 q^{16}-27 q^{15}+20 q^{14}+12 q^{13}-34 q^{12}+19 q^{11}+19 q^{10}-36 q^9+11 q^8+24 q^7-29 q^6+3 q^5+23 q^4-18 q^3-3 q^2+15 q-7-5 q^{-1} +6 q^{-2} - q^{-3} -2 q^{-4} + q^{-5} </math>|J3=<math>-q^{48}+2 q^{47}-q^{46}-2 q^{44}+4 q^{43}-q^{42}-2 q^{41}-q^{40}+4 q^{39}-q^{38}+q^{37}-2 q^{36}-4 q^{35}-3 q^{34}+16 q^{33}+7 q^{32}-27 q^{31}-15 q^{30}+35 q^{29}+28 q^{28}-41 q^{27}-38 q^{26}+37 q^{25}+49 q^{24}-31 q^{23}-52 q^{22}+15 q^{21}+55 q^{20}-4 q^{19}-47 q^{18}-16 q^{17}+49 q^{16}+21 q^{15}-34 q^{14}-41 q^{13}+34 q^{12}+41 q^{11}-16 q^{10}-54 q^9+12 q^8+48 q^7+9 q^6-49 q^5-14 q^4+36 q^3+25 q^2-25 q-26+12 q^{-1} +22 q^{-2} -2 q^{-3} -17 q^{-4} -2 q^{-5} +9 q^{-6} +4 q^{-7} -5 q^{-8} -2 q^{-9} + q^{-10} +2 q^{-11} - q^{-12} </math>|J4=<math>q^{78}-2 q^{77}+q^{76}-q^{74}+5 q^{73}-8 q^{72}+4 q^{71}+q^{70}-3 q^{69}+11 q^{68}-21 q^{67}+10 q^{66}+6 q^{65}-q^{64}+22 q^{63}-50 q^{62}+2 q^{61}+15 q^{60}+30 q^{59}+58 q^{58}-106 q^{57}-51 q^{56}+8 q^{55}+100 q^{54}+155 q^{53}-155 q^{52}-160 q^{51}-64 q^{50}+169 q^{49}+315 q^{48}-139 q^{47}-262 q^{46}-191 q^{45}+161 q^{44}+448 q^{43}-58 q^{42}-272 q^{41}-289 q^{40}+77 q^{39}+476 q^{38}+12 q^{37}-196 q^{36}-297 q^{35}-15 q^{34}+418 q^{33}+32 q^{32}-102 q^{31}-249 q^{30}-79 q^{29}+332 q^{28}+30 q^{27}-11 q^{26}-189 q^{25}-134 q^{24}+234 q^{23}+30 q^{22}+79 q^{21}-117 q^{20}-175 q^{19}+118 q^{18}+2 q^{17}+149 q^{16}-13 q^{15}-162 q^{14}+11 q^{13}-67 q^{12}+150 q^{11}+81 q^{10}-77 q^9-25 q^8-136 q^7+71 q^6+100 q^5+18 q^4+16 q^3-135 q^2-15 q+42+45 q^{-1} +64 q^{-2} -70 q^{-3} -36 q^{-4} -14 q^{-5} +14 q^{-6} +59 q^{-7} -13 q^{-8} -13 q^{-9} -21 q^{-10} -9 q^{-11} +26 q^{-12} +2 q^{-13} +2 q^{-14} -7 q^{-15} -8 q^{-16} +6 q^{-17} + q^{-18} +2 q^{-19} - q^{-20} -2 q^{-21} + q^{-22} </math>|J5=<math>-q^{115}+2 q^{114}-q^{113}+q^{111}-2 q^{110}-q^{109}+5 q^{108}-3 q^{107}-3 q^{106}+6 q^{105}-2 q^{104}-2 q^{103}+7 q^{102}-11 q^{101}-9 q^{100}+13 q^{99}+12 q^{98}+7 q^{97}-32 q^{95}-38 q^{94}+14 q^{93}+58 q^{92}+65 q^{91}+8 q^{90}-104 q^{89}-143 q^{88}-25 q^{87}+162 q^{86}+253 q^{85}+96 q^{84}-245 q^{83}-430 q^{82}-194 q^{81}+311 q^{80}+650 q^{79}+390 q^{78}-361 q^{77}-917 q^{76}-639 q^{75}+339 q^{74}+1163 q^{73}+965 q^{72}-225 q^{71}-1373 q^{70}-1306 q^{69}+40 q^{68}+1474 q^{67}+1605 q^{66}+217 q^{65}-1464 q^{64}-1835 q^{63}-469 q^{62}+1372 q^{61}+1922 q^{60}+683 q^{59}-1187 q^{58}-1931 q^{57}-828 q^{56}+1021 q^{55}+1828 q^{54}+892 q^{53}-835 q^{52}-1706 q^{51}-908 q^{50}+703 q^{49}+1547 q^{48}+902 q^{47}-565 q^{46}-1429 q^{45}-881 q^{44}+450 q^{43}+1272 q^{42}+899 q^{41}-294 q^{40}-1167 q^{39}-893 q^{38}+144 q^{37}+965 q^{36}+921 q^{35}+57 q^{34}-805 q^{33}-872 q^{32}-230 q^{31}+532 q^{30}+820 q^{29}+405 q^{28}-311 q^{27}-659 q^{26}-493 q^{25}+19 q^{24}+485 q^{23}+529 q^{22}+157 q^{21}-230 q^{20}-444 q^{19}-336 q^{18}+18 q^{17}+318 q^{16}+343 q^{15}+182 q^{14}-108 q^{13}-321 q^{12}-279 q^{11}-45 q^{10}+168 q^9+285 q^8+200 q^7-34 q^6-218 q^5-227 q^4-102 q^3+89 q^2+212 q+168+17 q^{-1} -124 q^{-2} -169 q^{-3} -98 q^{-4} +35 q^{-5} +124 q^{-6} +117 q^{-7} +34 q^{-8} -58 q^{-9} -101 q^{-10} -63 q^{-11} +7 q^{-12} +58 q^{-13} +62 q^{-14} +27 q^{-15} -28 q^{-16} -44 q^{-17} -25 q^{-18} - q^{-19} +21 q^{-20} +27 q^{-21} +6 q^{-22} -12 q^{-23} -10 q^{-24} -7 q^{-25} -2 q^{-26} +9 q^{-27} +6 q^{-28} -2 q^{-29} -2 q^{-30} - q^{-31} -2 q^{-32} + q^{-33} +2 q^{-34} - q^{-35} </math>|J6=<math>q^{159}-2 q^{158}+q^{157}-q^{155}+2 q^{154}-2 q^{153}+4 q^{152}-6 q^{151}+5 q^{150}-9 q^{148}+7 q^{147}-2 q^{146}+10 q^{145}-10 q^{144}+13 q^{143}-4 q^{142}-31 q^{141}+12 q^{140}+4 q^{139}+25 q^{138}-6 q^{137}+32 q^{136}-20 q^{135}-85 q^{134}+5 q^{133}+14 q^{132}+68 q^{131}+37 q^{130}+80 q^{129}-63 q^{128}-223 q^{127}-62 q^{126}+30 q^{125}+208 q^{124}+220 q^{123}+204 q^{122}-204 q^{121}-605 q^{120}-340 q^{119}+46 q^{118}+627 q^{117}+818 q^{116}+593 q^{115}-507 q^{114}-1544 q^{113}-1222 q^{112}-158 q^{111}+1440 q^{110}+2251 q^{109}+1742 q^{108}-668 q^{107}-3115 q^{106}-3169 q^{105}-1218 q^{104}+2137 q^{103}+4445 q^{102}+4113 q^{101}+158 q^{100}-4498 q^{99}-5873 q^{98}-3585 q^{97}+1650 q^{96}+6235 q^{95}+7113 q^{94}+2375 q^{93}-4436 q^{92}-7880 q^{91}-6423 q^{90}-287 q^{89}+6338 q^{88}+9113 q^{87}+4911 q^{86}-2883 q^{85}-8034 q^{84}-8082 q^{83}-2407 q^{82}+4977 q^{81}+9202 q^{80}+6239 q^{79}-1184 q^{78}-6839 q^{77}-8014 q^{76}-3420 q^{75}+3494 q^{74}+8137 q^{73}+6180 q^{72}-313 q^{71}-5556 q^{70}-7159 q^{69}-3480 q^{68}+2566 q^{67}+7063 q^{66}+5735 q^{65}+91 q^{64}-4618 q^{63}-6472 q^{62}-3536 q^{61}+1751 q^{60}+6207 q^{59}+5602 q^{58}+810 q^{57}-3560 q^{56}-5957 q^{55}-4008 q^{54}+466 q^{53}+5072 q^{52}+5565 q^{51}+1999 q^{50}-1927 q^{49}-5045 q^{48}-4495 q^{47}-1270 q^{46}+3253 q^{45}+4977 q^{44}+3107 q^{43}+161 q^{42}-3313 q^{41}-4255 q^{40}-2817 q^{39}+909 q^{38}+3399 q^{37}+3321 q^{36}+1982 q^{35}-968 q^{34}-2838 q^{33}-3283 q^{32}-1132 q^{31}+1108 q^{30}+2183 q^{29}+2569 q^{28}+1028 q^{27}-642 q^{26}-2242 q^{25}-1818 q^{24}-786 q^{23}+247 q^{22}+1581 q^{21}+1570 q^{20}+1053 q^{19}-431 q^{18}-922 q^{17}-1180 q^{16}-1081 q^{15}-30 q^{14}+627 q^{13}+1209 q^{12}+654 q^{11}+407 q^{10}-267 q^9-935 q^8-784 q^7-489 q^6+281 q^5+387 q^4+804 q^3+568 q^2-31 q-367-630 q^{-1} -353 q^{-2} -326 q^{-3} +278 q^{-4} +487 q^{-5} +391 q^{-6} +210 q^{-7} -109 q^{-8} -191 q^{-9} -480 q^{-10} -173 q^{-11} +21 q^{-12} +171 q^{-13} +242 q^{-14} +181 q^{-15} +134 q^{-16} -191 q^{-17} -147 q^{-18} -143 q^{-19} -60 q^{-20} +23 q^{-21} +102 q^{-22} +169 q^{-23} + q^{-24} - q^{-25} -61 q^{-26} -62 q^{-27} -59 q^{-28} -4 q^{-29} +70 q^{-30} +15 q^{-31} +31 q^{-32} + q^{-33} -10 q^{-34} -33 q^{-35} -19 q^{-36} +16 q^{-37} - q^{-38} +12 q^{-39} +6 q^{-40} +5 q^{-41} -9 q^{-42} -8 q^{-43} +4 q^{-44} -2 q^{-45} +2 q^{-46} + q^{-47} +2 q^{-48} - q^{-49} -2 q^{-50} + q^{-51} </math>|J7=<math>-q^{210}+2 q^{209}-q^{208}+q^{206}-2 q^{205}+2 q^{204}-q^{203}-3 q^{202}+4 q^{201}-2 q^{200}+3 q^{199}+4 q^{198}-9 q^{197}+3 q^{196}-2 q^{195}-6 q^{194}+9 q^{193}-6 q^{192}+12 q^{191}+14 q^{190}-22 q^{189}-3 q^{188}-9 q^{187}-5 q^{186}+16 q^{185}-10 q^{184}+29 q^{183}+33 q^{182}-35 q^{181}-18 q^{180}-31 q^{179}-16 q^{178}+36 q^{177}+49 q^{175}+47 q^{174}-53 q^{173}-40 q^{172}-76 q^{171}-12 q^{170}+122 q^{169}+76 q^{168}+72 q^{167}-39 q^{166}-242 q^{165}-220 q^{164}-140 q^{163}+196 q^{162}+599 q^{161}+559 q^{160}+238 q^{159}-481 q^{158}-1239 q^{157}-1263 q^{156}-584 q^{155}+866 q^{154}+2354 q^{153}+2602 q^{152}+1401 q^{151}-1266 q^{150}-4030 q^{149}-4819 q^{148}-2971 q^{147}+1390 q^{146}+6115 q^{145}+8069 q^{144}+5760 q^{143}-778 q^{142}-8391 q^{141}-12332 q^{140}-9926 q^{139}-999 q^{138}+10196 q^{137}+17118 q^{136}+15480 q^{135}+4444 q^{134}-10831 q^{133}-21805 q^{132}-22019 q^{131}-9529 q^{130}+9805 q^{129}+25394 q^{128}+28569 q^{127}+15912 q^{126}-6705 q^{125}-27132 q^{124}-34318 q^{123}-22748 q^{122}+2046 q^{121}+26703 q^{120}+38148 q^{119}+28907 q^{118}+3555 q^{117}-24199 q^{116}-39726 q^{115}-33577 q^{114}-8984 q^{113}+20451 q^{112}+39162 q^{111}+36099 q^{110}+13260 q^{109}-16293 q^{108}-36921 q^{107}-36609 q^{106}-16061 q^{105}+12651 q^{104}+34080 q^{103}+35577 q^{102}+17123 q^{101}-10013 q^{100}-31135 q^{99}-33734 q^{98}-17115 q^{97}+8351 q^{96}+28806 q^{95}+31846 q^{94}+16497 q^{93}-7457 q^{92}-27039 q^{91}-30265 q^{90}-15978 q^{89}+6713 q^{88}+25707 q^{87}+29252 q^{86}+15940 q^{85}-5748 q^{84}-24446 q^{83}-28643 q^{82}-16500 q^{81}+4185 q^{80}+22870 q^{79}+28170 q^{78}+17653 q^{77}-1859 q^{76}-20759 q^{75}-27598 q^{74}-19111 q^{73}-1077 q^{72}+17871 q^{71}+26487 q^{70}+20649 q^{69}+4632 q^{68}-14238 q^{67}-24789 q^{66}-21836 q^{65}-8322 q^{64}+9833 q^{63}+22076 q^{62}+22420 q^{61}+12033 q^{60}-4936 q^{59}-18488 q^{58}-21951 q^{57}-15106 q^{56}-268 q^{55}+13847 q^{54}+20294 q^{53}+17270 q^{52}+5184 q^{51}-8564 q^{50}-17174 q^{49}-17944 q^{48}-9405 q^{47}+2938 q^{46}+12872 q^{45}+16985 q^{44}+12176 q^{43}+2269 q^{42}-7648 q^{41}-14222 q^{40}-13219 q^{39}-6480 q^{38}+2322 q^{37}+10193 q^{36}+12219 q^{35}+8872 q^{34}+2383 q^{33}-5339 q^{32}-9514 q^{31}-9364 q^{30}-5658 q^{29}+854 q^{28}+5722 q^{27}+7818 q^{26}+6953 q^{25}+2682 q^{24}-1701 q^{23}-5031 q^{22}-6443 q^{21}-4438 q^{20}-1444 q^{19}+1756 q^{18}+4361 q^{17}+4440 q^{16}+3318 q^{15}+1039 q^{14}-1853 q^{13}-3091 q^{12}-3469 q^{11}-2603 q^{10}-493 q^9+1059 q^8+2491 q^7+2914 q^6+1801 q^5+681 q^4-882 q^3-2072 q^2-2042 q-1742-535 q^{-1} +836 q^{-2} +1402 q^{-3} +1839 q^{-4} +1337 q^{-5} +288 q^{-6} -426 q^{-7} -1279 q^{-8} -1394 q^{-9} -896 q^{-10} -423 q^{-11} +485 q^{-12} +973 q^{-13} +918 q^{-14} +815 q^{-15} +168 q^{-16} -344 q^{-17} -582 q^{-18} -824 q^{-19} -493 q^{-20} -90 q^{-21} +173 q^{-22} +524 q^{-23} +467 q^{-24} +319 q^{-25} +164 q^{-26} -222 q^{-27} -323 q^{-28} -302 q^{-29} -253 q^{-30} +3 q^{-31} +94 q^{-32} +176 q^{-33} +260 q^{-34} +109 q^{-35} +6 q^{-36} -76 q^{-37} -156 q^{-38} -83 q^{-39} -69 q^{-40} -27 q^{-41} +83 q^{-42} +73 q^{-43} +65 q^{-44} +27 q^{-45} -34 q^{-46} -17 q^{-47} -33 q^{-48} -44 q^{-49} - q^{-50} +11 q^{-51} +26 q^{-52} +22 q^{-53} -6 q^{-54} +4 q^{-55} -2 q^{-56} -14 q^{-57} -6 q^{-58} -4 q^{-59} +6 q^{-60} +8 q^{-61} -2 q^{-62} +2 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 82: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 62]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 62]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 19, 12, 18], X[5, 15, 6, 14], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 19, 12, 18], X[5, 15, 6, 14], |
|||
X[7, 17, 8, 16], X[15, 7, 16, 6], X[17, 9, 18, 8], X[13, 1, 14, 20], |
X[7, 17, 8, 16], X[15, 7, 16, 6], X[17, 9, 18, 8], X[13, 1, 14, 20], |
||
X[19, 13, 20, 12], X[9, 2, 10, 3]]</nowiki></pre></td></tr> |
X[19, 13, 20, 12], X[9, 2, 10, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 62]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 62]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -4, 6, -5, 7, -10, 2, -3, 9, -8, 4, -6, 5, -7, |
|||
3, -9, 8]</nowiki></pre></td></tr> |
3, -9, 8]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 62]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 62]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 14, 16, 2, 18, 20, 6, 8, 12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 62]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, -2, 1, 1, 1, -2, -2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, -2, 1, 1, 1, -2, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 62]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 62]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 62]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_62_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 62]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 62]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 6 8 2 3 4 |
|||
9 + t - -- + -- - - - 8 t + 6 t - 3 t + t |
9 + t - -- + -- - - - 8 t + 6 t - 3 t + t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 62]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 62]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 |
|||
1 + 5 z + 8 z + 5 z + z</nowiki></pre></td></tr> |
1 + 5 z + 8 z + 5 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 62], Knot[11, NonAlternating, 76], |
|||
Knot[11, NonAlternating, 78]}</nowiki></pre></td></tr> |
Knot[11, NonAlternating, 78]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 62]], KnotSignature[Knot[10, 62]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 62]], KnotSignature[Knot[10, 62]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{45, 4}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 7 8 9 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 62]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 7 8 9 |
|||
2 - - - 3 q + 6 q - 6 q + 7 q - 7 q + 6 q - 4 q + 2 q - q |
2 - - - 3 q + 6 q - 6 q + 7 q - 7 q + 6 q - 4 q + 2 q - q |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 62]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 62]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 62]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 4 6 8 10 12 14 22 26 |
|||
-q - q + q + 2 q + q + 3 q - q + 2 q - 2 q - q</nowiki></pre></td></tr> |
-q - q + q + 2 q + q + 3 q - q + 2 q - 2 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 62]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 62]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 4 6 6 |
|||
-4 7 2 8 z 20 z 7 z 5 z 18 z 5 z z 7 z |
|||
-- + -- - -- - ---- + ----- - ---- - ---- + ----- - ---- - -- + ---- - |
|||
6 4 2 6 4 2 6 4 2 6 4 |
|||
a a a a a a a a a a a |
|||
6 8 |
|||
z z |
|||
-- + -- |
|||
2 4 |
|||
a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 62]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
|||
4 7 2 z z z 6 z 5 z 2 z z 4 z 8 z |
4 7 2 z z z 6 z 5 z 2 z z 4 z 8 z |
||
-- + -- + -- - --- + -- - -- - --- - --- - --- - --- + ---- - ---- - |
-- + -- + -- - --- + -- - -- - --- - --- - --- - --- + ---- - ---- - |
||
Line 118: | Line 186: | ||
2 5 3 |
2 5 3 |
||
a a a</nowiki></pre></td></tr> |
a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 62]], Vassiliev[3][Knot[10, 62]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 62]], Vassiliev[3][Knot[10, 62]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 9}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 62]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
3 5 1 1 q 2 q q 5 7 |
3 5 1 1 q 2 q q 5 7 |
||
4 q + 3 q + ----- + ---- + -- + --- + -- + 3 q t + 3 q t + |
4 q + 3 q + ----- + ---- + -- + --- + -- + 3 q t + 3 q t + |
||
Line 132: | Line 202: | ||
13 5 15 5 15 6 17 6 19 7 |
13 5 15 5 15 6 17 6 19 7 |
||
q t + 3 q t + q t + q t + q t</nowiki></pre></td></tr> |
q t + 3 q t + q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 62], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 -3 6 5 2 3 4 5 |
|||
-7 + q - -- - q + -- - - + 15 q - 3 q - 18 q + 23 q + 3 q - |
|||
4 2 q |
|||
q q |
|||
6 7 8 9 10 11 12 13 |
|||
29 q + 24 q + 11 q - 36 q + 19 q + 19 q - 34 q + 12 q + |
|||
14 15 16 17 18 19 20 21 |
|||
20 q - 27 q + 7 q + 13 q - 16 q + 5 q + 5 q - 7 q + |
|||
22 23 24 25 |
|||
3 q + q - 2 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:18, 29 August 2005
|
|
Visit 10 62's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 62's page at Knotilus! Visit 10 62's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X11,19,12,18 X5,15,6,14 X7,17,8,16 X15,7,16,6 X17,9,18,8 X13,1,14,20 X19,13,20,12 X9,2,10,3 |
Gauss code | -1, 10, -2, 1, -4, 6, -5, 7, -10, 2, -3, 9, -8, 4, -6, 5, -7, 3, -9, 8 |
Dowker-Thistlethwaite code | 4 10 14 16 2 18 20 6 8 12 |
Conway Notation | [4,3,21] |
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 62"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 45, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n76, K11n78, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (5, 9) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 62. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.