10 152: Difference between revisions
| No edit summary | DrorsRobot (talk | contribs)  No edit summary | ||
| Line 16: | Line 16: | ||
| {{Knot Presentations}} | {{Knot Presentations}} | ||
| <center><table border=1 cellpadding=10><tr align=center valign=top> | |||
| <td> | |||
| [[Braid Representatives|Minimum Braid Representative]]: | |||
| <table cellspacing=0 cellpadding=0 border=0> | |||
| <tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> | |||
| </table> | |||
| [[Invariants from Braid Theory|Length]] is 10, width is 3. | |||
| [[Invariants from Braid Theory|Braid index]] is 3. | |||
| </td> | |||
| <td> | |||
| [[Lightly Documented Features|A Morse Link Presentation]]: | |||
| [[Image:{{PAGENAME}}_ML.gif]] | |||
| </td> | |||
| </tr></table></center> | |||
| {{3D Invariants}} | {{3D Invariants}} | ||
| {{4D Invariants}} | {{4D Invariants}} | ||
| {{Polynomial Invariants}} | {{Polynomial Invariants}} | ||
| === "Similar" Knots (within the Atlas) === | |||
| Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: | |||
| {...} | |||
| Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):  | |||
| {...} | |||
| {{Vassiliev Invariants}} | {{Vassiliev Invariants}} | ||
| Line 41: | Line 71: | ||
| <tr align=center><td>-27</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | <tr align=center><td>-27</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | ||
| </table>}} | </table>}} | ||
| {{Display Coloured Jones|J2=<math> q^{-8} + q^{-11} + q^{-13} + q^{-14} -3 q^{-15} + q^{-16} +3 q^{-17} -3 q^{-18} -4 q^{-19} +5 q^{-20} + q^{-21} -9 q^{-22} +5 q^{-23} +6 q^{-24} -11 q^{-25} +4 q^{-26} +8 q^{-27} -10 q^{-28} + q^{-29} +8 q^{-30} -5 q^{-31} -3 q^{-32} +5 q^{-33} - q^{-34} -2 q^{-35} + q^{-36} </math>|J3=<math> q^{-12} + q^{-16} + q^{-19} + q^{-20} -3 q^{-22} + q^{-23} + q^{-24} +2 q^{-25} -2 q^{-26} -4 q^{-28} +2 q^{-30} +7 q^{-31} -6 q^{-32} -8 q^{-33} -4 q^{-34} +16 q^{-35} +6 q^{-36} -15 q^{-37} -15 q^{-38} +16 q^{-39} +23 q^{-40} -14 q^{-41} -28 q^{-42} +12 q^{-43} +33 q^{-44} -11 q^{-45} -33 q^{-46} +7 q^{-47} +36 q^{-48} -7 q^{-49} -33 q^{-50} + q^{-51} +33 q^{-52} + q^{-53} -26 q^{-54} -8 q^{-55} +21 q^{-56} +11 q^{-57} -13 q^{-58} -13 q^{-59} +5 q^{-60} +11 q^{-61} + q^{-62} -8 q^{-63} -2 q^{-64} +4 q^{-65} +2 q^{-66} - q^{-67} -2 q^{-68} + q^{-69} </math>|J4=<math> q^{-16} + q^{-21} + q^{-25} + q^{-26} -3 q^{-29} + q^{-30} + q^{-31} +2 q^{-33} -2 q^{-34} + q^{-35} -5 q^{-37} -2 q^{-39} +5 q^{-40} +7 q^{-41} -4 q^{-42} -2 q^{-43} -11 q^{-44} -4 q^{-45} +8 q^{-46} +5 q^{-47} +16 q^{-48} -6 q^{-49} -17 q^{-50} -14 q^{-51} -7 q^{-52} +32 q^{-53} +27 q^{-54} -36 q^{-56} -46 q^{-57} +14 q^{-58} +59 q^{-59} +44 q^{-60} -31 q^{-61} -81 q^{-62} -31 q^{-63} +67 q^{-64} +89 q^{-65} -9 q^{-66} -98 q^{-67} -71 q^{-68} +63 q^{-69} +113 q^{-70} +9 q^{-71} -99 q^{-72} -92 q^{-73} +57 q^{-74} +121 q^{-75} +17 q^{-76} -93 q^{-77} -100 q^{-78} +48 q^{-79} +117 q^{-80} +27 q^{-81} -76 q^{-82} -103 q^{-83} +25 q^{-84} +99 q^{-85} +43 q^{-86} -38 q^{-87} -92 q^{-88} -11 q^{-89} +55 q^{-90} +49 q^{-91} +12 q^{-92} -56 q^{-93} -29 q^{-94} +5 q^{-95} +25 q^{-96} +32 q^{-97} -13 q^{-98} -15 q^{-99} -14 q^{-100} -2 q^{-101} +19 q^{-102} +2 q^{-103} -6 q^{-105} -6 q^{-106} +5 q^{-107} + q^{-108} +2 q^{-109} - q^{-110} -2 q^{-111} + q^{-112} </math>|J5=<math> q^{-20} + q^{-26} + q^{-31} + q^{-32} -3 q^{-36} + q^{-37} + q^{-38} +2 q^{-41} -2 q^{-42} + q^{-43} + q^{-44} - q^{-45} -5 q^{-46} -2 q^{-48} + q^{-49} +5 q^{-50} +6 q^{-51} -4 q^{-52} + q^{-53} -5 q^{-54} -8 q^{-55} -4 q^{-56} +4 q^{-57} -3 q^{-58} +12 q^{-59} +13 q^{-60} + q^{-61} -4 q^{-62} -12 q^{-63} -26 q^{-64} -9 q^{-65} +13 q^{-66} +22 q^{-67} +35 q^{-68} +20 q^{-69} -23 q^{-70} -42 q^{-71} -45 q^{-72} -24 q^{-73} +39 q^{-74} +81 q^{-75} +57 q^{-76} +5 q^{-77} -69 q^{-78} -126 q^{-79} -63 q^{-80} +55 q^{-81} +142 q^{-82} +138 q^{-83} +17 q^{-84} -161 q^{-85} -210 q^{-86} -81 q^{-87} +132 q^{-88} +261 q^{-89} +169 q^{-90} -97 q^{-91} -296 q^{-92} -244 q^{-93} +52 q^{-94} +312 q^{-95} +302 q^{-96} - q^{-97} -320 q^{-98} -346 q^{-99} -34 q^{-100} +318 q^{-101} +371 q^{-102} +65 q^{-103} -316 q^{-104} -390 q^{-105} -77 q^{-106} +308 q^{-107} +394 q^{-108} +96 q^{-109} -306 q^{-110} -402 q^{-111} -97 q^{-112} +294 q^{-113} +396 q^{-114} +119 q^{-115} -282 q^{-116} -401 q^{-117} -127 q^{-118} +252 q^{-119} +385 q^{-120} +165 q^{-121} -211 q^{-122} -371 q^{-123} -186 q^{-124} +145 q^{-125} +326 q^{-126} +218 q^{-127} -68 q^{-128} -268 q^{-129} -221 q^{-130} -10 q^{-131} +181 q^{-132} +208 q^{-133} +66 q^{-134} -93 q^{-135} -159 q^{-136} -99 q^{-137} +19 q^{-138} +100 q^{-139} +93 q^{-140} +25 q^{-141} -39 q^{-142} -66 q^{-143} -43 q^{-144} + q^{-145} +36 q^{-146} +34 q^{-147} +14 q^{-148} -5 q^{-149} -23 q^{-150} -18 q^{-151} - q^{-152} +9 q^{-153} +9 q^{-154} +6 q^{-155} -8 q^{-157} -4 q^{-158} + q^{-159} +2 q^{-160} + q^{-161} +2 q^{-162} - q^{-163} -2 q^{-164} + q^{-165} </math>|J6=<math> q^{-24} + q^{-31} + q^{-37} + q^{-38} -3 q^{-43} + q^{-44} + q^{-45} +2 q^{-49} -2 q^{-50} + q^{-51} + q^{-52} - q^{-54} -5 q^{-55} -2 q^{-57} + q^{-58} + q^{-59} +4 q^{-60} +6 q^{-61} -4 q^{-62} + q^{-63} -2 q^{-64} -2 q^{-65} -8 q^{-66} -5 q^{-67} +4 q^{-68} -6 q^{-69} +4 q^{-70} +9 q^{-71} +16 q^{-72} + q^{-73} - q^{-74} + q^{-75} -22 q^{-76} -20 q^{-77} -13 q^{-78} +8 q^{-79} +6 q^{-80} +22 q^{-81} +40 q^{-82} +16 q^{-83} -2 q^{-84} -20 q^{-85} -32 q^{-86} -56 q^{-87} -39 q^{-88} +14 q^{-89} +39 q^{-90} +68 q^{-91} +81 q^{-92} +51 q^{-93} -28 q^{-94} -105 q^{-95} -116 q^{-96} -110 q^{-97} -30 q^{-98} +101 q^{-99} +195 q^{-100} +195 q^{-101} +76 q^{-102} -68 q^{-103} -249 q^{-104} -307 q^{-105} -190 q^{-106} +67 q^{-107} +318 q^{-108} +404 q^{-109} +315 q^{-110} -35 q^{-111} -395 q^{-112} -586 q^{-113} -404 q^{-114} +49 q^{-115} +496 q^{-116} +744 q^{-117} +497 q^{-118} -78 q^{-119} -722 q^{-120} -888 q^{-121} -492 q^{-122} +232 q^{-123} +912 q^{-124} +1003 q^{-125} +448 q^{-126} -555 q^{-127} -1135 q^{-128} -979 q^{-129} -170 q^{-130} +837 q^{-131} +1289 q^{-132} +881 q^{-133} -299 q^{-134} -1175 q^{-135} -1257 q^{-136} -469 q^{-137} +699 q^{-138} +1392 q^{-139} +1113 q^{-140} -127 q^{-141} -1144 q^{-142} -1364 q^{-143} -608 q^{-144} +607 q^{-145} +1409 q^{-146} +1200 q^{-147} -51 q^{-148} -1115 q^{-149} -1390 q^{-150} -657 q^{-151} +557 q^{-152} +1403 q^{-153} +1233 q^{-154} -4 q^{-155} -1082 q^{-156} -1400 q^{-157} -704 q^{-158} +483 q^{-159} +1371 q^{-160} +1274 q^{-161} +108 q^{-162} -973 q^{-163} -1385 q^{-164} -818 q^{-165} +275 q^{-166} +1223 q^{-167} +1306 q^{-168} +361 q^{-169} -659 q^{-170} -1231 q^{-171} -956 q^{-172} -125 q^{-173} +819 q^{-174} +1172 q^{-175} +648 q^{-176} -127 q^{-177} -785 q^{-178} -893 q^{-179} -516 q^{-180} +213 q^{-181} +717 q^{-182} +663 q^{-183} +314 q^{-184} -179 q^{-185} -486 q^{-186} -548 q^{-187} -211 q^{-188} +156 q^{-189} +327 q^{-190} +341 q^{-191} +168 q^{-192} -39 q^{-193} -252 q^{-194} -214 q^{-195} -105 q^{-196} +9 q^{-197} +108 q^{-198} +137 q^{-199} +108 q^{-200} -20 q^{-201} -48 q^{-202} -69 q^{-203} -55 q^{-204} -24 q^{-205} +19 q^{-206} +56 q^{-207} +18 q^{-208} +17 q^{-209} -4 q^{-210} -15 q^{-211} -24 q^{-212} -12 q^{-213} +11 q^{-214} +2 q^{-215} +10 q^{-216} +5 q^{-217} +3 q^{-218} -8 q^{-219} -6 q^{-220} +3 q^{-221} -2 q^{-222} +2 q^{-223} + q^{-224} +2 q^{-225} - q^{-226} -2 q^{-227} + q^{-228} </math>|J7=<math> q^{-28} + q^{-36} + q^{-43} + q^{-44} -3 q^{-50} + q^{-51} + q^{-52} +2 q^{-57} -2 q^{-58} + q^{-59} + q^{-60} - q^{-63} -5 q^{-64} -2 q^{-66} + q^{-67} + q^{-68} +4 q^{-70} +6 q^{-71} -4 q^{-72} + q^{-73} -2 q^{-74} + q^{-75} -2 q^{-76} -9 q^{-77} -5 q^{-78} +4 q^{-79} -6 q^{-80} + q^{-81} + q^{-82} +12 q^{-83} +16 q^{-84} - q^{-86} +5 q^{-87} -9 q^{-88} -16 q^{-89} -23 q^{-90} -10 q^{-91} +7 q^{-92} -3 q^{-93} +6 q^{-94} +28 q^{-95} +32 q^{-96} +22 q^{-97} - q^{-98} -2 q^{-99} -7 q^{-100} -44 q^{-101} -59 q^{-102} -36 q^{-103} -7 q^{-104} +15 q^{-105} +29 q^{-106} +77 q^{-107} +99 q^{-108} +53 q^{-109} +3 q^{-110} -46 q^{-111} -84 q^{-112} -129 q^{-113} -144 q^{-114} -65 q^{-115} +45 q^{-116} +110 q^{-117} +189 q^{-118} +211 q^{-119} +169 q^{-120} +30 q^{-121} -166 q^{-122} -273 q^{-123} -323 q^{-124} -298 q^{-125} -103 q^{-126} +163 q^{-127} +416 q^{-128} +536 q^{-129} +427 q^{-130} +195 q^{-131} -189 q^{-132} -625 q^{-133} -797 q^{-134} -678 q^{-135} -229 q^{-136} +371 q^{-137} +877 q^{-138} +1151 q^{-139} +938 q^{-140} +178 q^{-141} -701 q^{-142} -1391 q^{-143} -1538 q^{-144} -983 q^{-145} +44 q^{-146} +1281 q^{-147} +2058 q^{-148} +1854 q^{-149} +789 q^{-150} -788 q^{-151} -2157 q^{-152} -2587 q^{-153} -1840 q^{-154} -40 q^{-155} +1987 q^{-156} +3088 q^{-157} +2785 q^{-158} +1004 q^{-159} -1458 q^{-160} -3281 q^{-161} -3597 q^{-162} -2002 q^{-163} +771 q^{-164} +3238 q^{-165} +4165 q^{-166} +2893 q^{-167} -55 q^{-168} -3005 q^{-169} -4507 q^{-170} -3604 q^{-171} -631 q^{-172} +2701 q^{-173} +4700 q^{-174} +4119 q^{-175} +1167 q^{-176} -2399 q^{-177} -4744 q^{-178} -4463 q^{-179} -1586 q^{-180} +2151 q^{-181} +4747 q^{-182} +4671 q^{-183} +1843 q^{-184} -1956 q^{-185} -4706 q^{-186} -4788 q^{-187} -2022 q^{-188} +1839 q^{-189} +4684 q^{-190} +4835 q^{-191} +2101 q^{-192} -1753 q^{-193} -4634 q^{-194} -4872 q^{-195} -2178 q^{-196} +1713 q^{-197} +4635 q^{-198} +4881 q^{-199} +2196 q^{-200} -1659 q^{-201} -4587 q^{-202} -4916 q^{-203} -2289 q^{-204} +1603 q^{-205} +4587 q^{-206} +4946 q^{-207} +2363 q^{-208} -1472 q^{-209} -4484 q^{-210} -5002 q^{-211} -2573 q^{-212} +1252 q^{-213} +4360 q^{-214} +5033 q^{-215} +2803 q^{-216} -873 q^{-217} -4023 q^{-218} -5009 q^{-219} -3154 q^{-220} +317 q^{-221} +3533 q^{-222} +4833 q^{-223} +3453 q^{-224} +395 q^{-225} -2747 q^{-226} -4413 q^{-227} -3685 q^{-228} -1165 q^{-229} +1773 q^{-230} +3710 q^{-231} +3631 q^{-232} +1834 q^{-233} -666 q^{-234} -2738 q^{-235} -3262 q^{-236} -2240 q^{-237} -313 q^{-238} +1613 q^{-239} +2547 q^{-240} +2262 q^{-241} +1034 q^{-242} -566 q^{-243} -1667 q^{-244} -1884 q^{-245} -1326 q^{-246} -225 q^{-247} +767 q^{-248} +1290 q^{-249} +1243 q^{-250} +624 q^{-251} -99 q^{-252} -652 q^{-253} -882 q^{-254} -679 q^{-255} -271 q^{-256} +146 q^{-257} +479 q^{-258} +514 q^{-259} +356 q^{-260} +114 q^{-261} -158 q^{-262} -258 q^{-263} -272 q^{-264} -201 q^{-265} -31 q^{-266} +93 q^{-267} +150 q^{-268} +147 q^{-269} +67 q^{-270} +20 q^{-271} -31 q^{-272} -93 q^{-273} -68 q^{-274} -39 q^{-275} +32 q^{-277} +23 q^{-278} +32 q^{-279} +28 q^{-280} -4 q^{-281} -15 q^{-282} -20 q^{-283} -15 q^{-284} +3 q^{-285} -3 q^{-286} +4 q^{-287} +12 q^{-288} +5 q^{-289} +2 q^{-290} -5 q^{-291} -6 q^{-292} + q^{-293} -2 q^{-295} +2 q^{-296} + q^{-297} +2 q^{-298} - q^{-299} -2 q^{-300} + q^{-301} </math>}} | |||
| {{Computer Talk Header}} | {{Computer Talk Header}} | ||
| Line 48: | Line 81: | ||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | ||
| </tr> | </tr> | ||
| <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August  | <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 152]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 152]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 12, 6, 13], X[18, 13, 19, 14],  | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 12, 6, 13], X[18, 13, 19, 14],  | |||
|   X[16, 9, 17, 10], X[10, 17, 11, 18], X[20, 15, 1, 16],  |   X[16, 9, 17, 10], X[10, 17, 11, 18], X[20, 15, 1, 16],  | ||
|   X[14, 19, 15, 20], X[7, 2, 8, 3], X[11, 4, 12, 5]]</nowiki></pre></td></tr> |   X[14, 19, 15, 20], X[7, 2, 8, 3], X[11, 4, 12, 5]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 152]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 152]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 10, -3, 1, -9, 2, 5, -6, -10, 3, 4, -8, 7, -5, 6,  | |||
|   -4, 8, -7]</nowiki></pre></td></tr> |   -4, 8, -7]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 152]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 152]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 12, 2, -16, 4, -18, -20, -10, -14]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 152]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -2, -2, -1, -1, -2, -2, -2}]</nowiki></pre></td></tr> | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -2, -2, -1, -1, -2, -2, -2}]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 152]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 152]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 152]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_152_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 152]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 4, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 152]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -4    -3    -2   4          2    3    4 | |||
| -5 + t   - t   - t   + - + 4 t - t  - t  + t | -5 + t   - t   - t   + - + 4 t - t  - t  + t | ||
|                        t</nowiki></pre></td></tr> |                        t</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 152]][z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 152]][z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2       4      6    8 | |||
| 1 + 7 z  + 13 z  + 7 z  + z</nowiki></pre></td></tr> | 1 + 7 z  + 13 z  + 7 z  + z</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 152]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{11, -6}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 152]], KnotSignature[Knot[10, 152]]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{11, -6}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 152]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -13    2     2     3    2    2     -7    -6    -4 | |||
| q    - --- + --- - --- + -- - -- + q   + q   + q | q    - --- + --- - --- + -- - -- + q   + q   + q | ||
|         12    11    10    9    8 |         12    11    10    9    8 | ||
|        q     q     q     q    q</nowiki></pre></td></tr> |        q     q     q     q    q</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 152]}</nowiki></pre></td></tr> | |||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 152]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 152]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2     -34    3     2     3     -24    2     3     2     -16    -14 | |||
| --- - q    - --- - --- - --- + q    + --- + --- + --- + q    + q | --- - q    - --- - --- - --- + q    + --- + --- + --- + q    + q | ||
|  40           32    30    28           22    20    18 |  40           32    30    28           22    20    18 | ||
| q            q     q     q            q     q     q</nowiki></pre></td></tr> | q            q     q     q            q     q     q</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 152]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 152]][a, z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>   8       10      12       8  2       10  2      12  2       8  4 | |||
| 8 a  - 10 a   + 3 a   + 22 a  z  - 17 a   z  + 2 a   z  + 21 a  z  -  | |||
|      10  4      8  6    10  6    8  8 | |||
|   8 a   z  + 8 a  z  - a   z  + a  z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 152]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>   8       10      12       9         11      13        15 | |||
| 8 a  + 10 a   + 3 a   - 10 a  z - 11 a   z + a   z + 2 a   z -  | 8 a  + 10 a   + 3 a   - 10 a  z - 11 a   z + a   z + 2 a   z -  | ||
| Line 102: | Line 164: | ||
|      8  6      10  6    14  6    9  7    11  7    8  8    10  8 |      8  6      10  6    14  6    9  7    11  7    8  8    10  8 | ||
|   8 a  z  - 9 a   z  + a   z  + a  z  + a   z  + a  z  + a   z</nowiki></pre></td></tr> |   8 a  z  - 9 a   z  + a   z  + a  z  + a   z  + a  z  + a   z</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 152]], Vassiliev[3][Knot[10, 152]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 152]], Vassiliev[3][Knot[10, 152]]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{7, -15}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9    -7      1        1        1        1        1        2 | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 152]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9    -7      1        1        1        1        1        2 | |||
| q   + q   + ------- + ------ + ------ + ------ + ------ + ------ +  | q   + q   + ------- + ------ + ------ + ------ + ------ + ------ +  | ||
|              27  10    25  9    23  9    23  8    21  8    21  7 |              27  10    25  9    23  9    23  8    21  8    21  7 | ||
| Line 119: | Line 183: | ||
|    13  4    15  3    11  2 |    13  4    15  3    11  2 | ||
|   q   t    q   t    q   t</nowiki></pre></td></tr> |   q   t    q   t    q   t</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 152], 2][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -36    2     -34    5     3     5     8     -29   10     8     4 | |||
| q    - --- - q    + --- - --- - --- + --- + q    - --- + --- + --- -  | |||
|         35           33    32    31    30           28    27    26 | |||
|        q            q     q     q     q            q     q     q | |||
|   11     6     5     9     -21    5     4     3     3     -16    3 | |||
|   --- + --- + --- - --- + q    + --- - --- - --- + --- + q    - --- +  | |||
|    25    24    23    22           20    19    18    17           15 | |||
|   q     q     q     q            q     q     q     q            q | |||
|    -14    -13    -11    -8 | |||
|   q    + q    + q    + q</nowiki></pre></td></tr> | |||
| </table> | </table> | ||
| See/edit the [[Rolfsen_Splice_Template]]. | |||
|  [[Category:Knot Page]] |  [[Category:Knot Page]] | ||
Revision as of 18:26, 29 August 2005
|  |  | 
|   | Visit 10 152's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 152's page at Knotilus! Visit 10 152's page at the original Knot Atlas! | 
10 152 Further Notes and Views
Knot presentations
| Planar diagram presentation | X1627 X3849 X5,12,6,13 X18,13,19,14 X16,9,17,10 X10,17,11,18 X20,15,1,16 X14,19,15,20 X7283 X11,4,12,5 | 
| Gauss code | -1, 9, -2, 10, -3, 1, -9, 2, 5, -6, -10, 3, 4, -8, 7, -5, 6, -4, 8, -7 | 
| Dowker-Thistlethwaite code | 6 8 12 2 -16 4 -18 -20 -10 -14 | 
| Conway Notation | [(3,2)-(3,2)] | 
| 
 Length is 10, width is 3. Braid index is 3. | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 152"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 11, -6 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
| V2 and V3: | (7, -15) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 10 152. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.






