10 126: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
<!-- --> |
||
Line 192: | Line 193: | ||
</table> |
</table> |
||
{| width=100% |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 21:03, 29 August 2005
|
|
![]() |
Visit 10 126's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 126's page at Knotilus! Visit 10 126's page at the original Knot Atlas! 10_126 is also known as the pretzel knot P(-5,3,2). |
10 126 Further Notes and Views
Knot presentations
Planar diagram presentation | X4251 X8493 X5,14,6,15 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X13,6,14,7 X2837 |
Gauss code | 1, -10, 2, -1, -3, 9, 10, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, 4 |
Dowker-Thistlethwaite code | 4 8 -14 2 -16 -18 -6 -20 -10 -12 |
Conway Notation | [41,3,2-] |
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 126"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 19, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (5, -9) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 126. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1+ q^{-1} +2 q^{-2} -4 q^{-3} + q^{-4} +6 q^{-5} -7 q^{-6} +10 q^{-8} -9 q^{-9} - q^{-10} +10 q^{-11} -7 q^{-12} -3 q^{-13} +8 q^{-14} -4 q^{-15} -4 q^{-16} +5 q^{-17} - q^{-18} -3 q^{-19} +2 q^{-20} - q^{-22} + q^{-23} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-q^3-q^2-q+2+2 q^{-1} - q^{-2} -3 q^{-3} - q^{-4} +4 q^{-5} +4 q^{-6} -2 q^{-7} -9 q^{-8} +3 q^{-9} +10 q^{-10} +3 q^{-11} -16 q^{-12} - q^{-13} +13 q^{-14} +8 q^{-15} -19 q^{-16} -3 q^{-17} +14 q^{-18} +8 q^{-19} -16 q^{-20} -6 q^{-21} +11 q^{-22} +9 q^{-23} -10 q^{-24} -9 q^{-25} +5 q^{-26} +10 q^{-27} -2 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +4 q^{-32} -6 q^{-33} -3 q^{-34} +2 q^{-35} +4 q^{-36} -2 q^{-37} - q^{-38} +2 q^{-40} - q^{-41} + q^{-44} - q^{-45} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+q^7+2 q^6-q^4-5 q^3-q^2+5 q+4+4 q^{-1} -8 q^{-2} -10 q^{-3} +3 q^{-4} +4 q^{-5} +15 q^{-6} + q^{-7} -15 q^{-8} -7 q^{-9} -10 q^{-10} +22 q^{-11} +19 q^{-12} -7 q^{-13} -13 q^{-14} -33 q^{-15} +18 q^{-16} +34 q^{-17} +6 q^{-18} -10 q^{-19} -51 q^{-20} +11 q^{-21} +39 q^{-22} +13 q^{-23} -3 q^{-24} -60 q^{-25} +8 q^{-26} +40 q^{-27} +14 q^{-28} - q^{-29} -59 q^{-30} +6 q^{-31} +36 q^{-32} +14 q^{-33} +5 q^{-34} -54 q^{-35} +26 q^{-37} +14 q^{-38} +16 q^{-39} -41 q^{-40} -8 q^{-41} +8 q^{-42} +9 q^{-43} +27 q^{-44} -21 q^{-45} -9 q^{-46} -7 q^{-47} -3 q^{-48} +26 q^{-49} -4 q^{-50} -10 q^{-52} -11 q^{-53} +14 q^{-54} +7 q^{-56} -3 q^{-57} -9 q^{-58} +5 q^{-59} -3 q^{-60} +5 q^{-61} + q^{-62} -4 q^{-63} +3 q^{-64} -3 q^{-65} + q^{-66} + q^{-67} -2 q^{-68} +2 q^{-69} - q^{-70} - q^{-73} + q^{-74} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+2 q^9+2 q^8-q^6-6 q^5-5 q^4+3 q^3+8 q^2+8 q+4-7 q^{-1} -17 q^{-2} -11 q^{-3} +3 q^{-4} +16 q^{-5} +22 q^{-6} +11 q^{-7} -12 q^{-8} -29 q^{-9} -27 q^{-10} - q^{-11} +27 q^{-12} +44 q^{-13} +26 q^{-14} -20 q^{-15} -56 q^{-16} -47 q^{-17} -2 q^{-18} +60 q^{-19} +77 q^{-20} +20 q^{-21} -59 q^{-22} -89 q^{-23} -50 q^{-24} +53 q^{-25} +111 q^{-26} +60 q^{-27} -45 q^{-28} -107 q^{-29} -84 q^{-30} +37 q^{-31} +123 q^{-32} +79 q^{-33} -34 q^{-34} -107 q^{-35} -97 q^{-36} +28 q^{-37} +123 q^{-38} +84 q^{-39} -30 q^{-40} -108 q^{-41} -94 q^{-42} +24 q^{-43} +118 q^{-44} +86 q^{-45} -25 q^{-46} -103 q^{-47} -92 q^{-48} +14 q^{-49} +104 q^{-50} +86 q^{-51} -5 q^{-52} -85 q^{-53} -88 q^{-54} -10 q^{-55} +71 q^{-56} +79 q^{-57} +25 q^{-58} -45 q^{-59} -71 q^{-60} -37 q^{-61} +22 q^{-62} +53 q^{-63} +43 q^{-64} + q^{-65} -32 q^{-66} -42 q^{-67} -17 q^{-68} +13 q^{-69} +30 q^{-70} +23 q^{-71} +8 q^{-72} -17 q^{-73} -24 q^{-74} -13 q^{-75} +2 q^{-76} +12 q^{-77} +20 q^{-78} +6 q^{-79} -7 q^{-80} -10 q^{-81} -9 q^{-82} -4 q^{-83} +8 q^{-84} +7 q^{-85} +3 q^{-86} + q^{-87} -4 q^{-88} -6 q^{-89} + q^{-91} +4 q^{-93} + q^{-94} -3 q^{-95} -3 q^{-98} +2 q^{-99} +2 q^{-100} - q^{-101} + q^{-103} -2 q^{-104} + q^{-106} + q^{-109} - q^{-110} } |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-q^{19}-q^{18}-q^{14}+5 q^{13}+q^{12}-2 q^9-6 q^8-10 q^7+4 q^6+4 q^5+9 q^4+12 q^3+10 q^2-5 q-25-14 q^{-1} -14 q^{-2} -3 q^{-3} +18 q^{-4} +40 q^{-5} +33 q^{-6} -5 q^{-7} -15 q^{-8} -41 q^{-9} -57 q^{-10} -32 q^{-11} +30 q^{-12} +73 q^{-13} +60 q^{-14} +55 q^{-15} -6 q^{-16} -97 q^{-17} -125 q^{-18} -65 q^{-19} +35 q^{-20} +95 q^{-21} +165 q^{-22} +117 q^{-23} -51 q^{-24} -179 q^{-25} -194 q^{-26} -84 q^{-27} +47 q^{-28} +234 q^{-29} +259 q^{-30} +59 q^{-31} -160 q^{-32} -278 q^{-33} -203 q^{-34} -46 q^{-35} +241 q^{-36} +349 q^{-37} +154 q^{-38} -113 q^{-39} -303 q^{-40} -263 q^{-41} -117 q^{-42} +223 q^{-43} +380 q^{-44} +195 q^{-45} -84 q^{-46} -300 q^{-47} -273 q^{-48} -148 q^{-49} +210 q^{-50} +384 q^{-51} +202 q^{-52} -76 q^{-53} -295 q^{-54} -270 q^{-55} -152 q^{-56} +205 q^{-57} +380 q^{-58} +203 q^{-59} -72 q^{-60} -289 q^{-61} -267 q^{-62} -157 q^{-63} +191 q^{-64} +366 q^{-65} +213 q^{-66} -49 q^{-67} -263 q^{-68} -258 q^{-69} -180 q^{-70} +142 q^{-71} +322 q^{-72} +226 q^{-73} +11 q^{-74} -191 q^{-75} -225 q^{-76} -216 q^{-77} +47 q^{-78} +228 q^{-79} +216 q^{-80} +88 q^{-81} -73 q^{-82} -142 q^{-83} -222 q^{-84} -56 q^{-85} +91 q^{-86} +149 q^{-87} +120 q^{-88} +39 q^{-89} -21 q^{-90} -156 q^{-91} -95 q^{-92} -25 q^{-93} +42 q^{-94} +70 q^{-95} +72 q^{-96} +67 q^{-97} -52 q^{-98} -47 q^{-99} -52 q^{-100} -28 q^{-101} -9 q^{-102} +28 q^{-103} +67 q^{-104} +5 q^{-105} +14 q^{-106} -13 q^{-107} -22 q^{-108} -36 q^{-109} -14 q^{-110} +24 q^{-111} - q^{-112} +23 q^{-113} +12 q^{-114} +7 q^{-115} -17 q^{-116} -14 q^{-117} +4 q^{-118} -15 q^{-119} +5 q^{-120} +6 q^{-121} +13 q^{-122} -3 q^{-123} -3 q^{-124} +7 q^{-125} -11 q^{-126} -3 q^{-127} -2 q^{-128} +7 q^{-129} - q^{-130} - q^{-131} +8 q^{-132} -4 q^{-133} -2 q^{-134} -3 q^{-135} +3 q^{-136} - q^{-137} -2 q^{-138} +6 q^{-139} - q^{-140} - q^{-141} -2 q^{-142} + q^{-143} -2 q^{-145} +3 q^{-146} - q^{-149} - q^{-152} + q^{-153} } |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.
Back to the top. |
|