In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 88]] |
Out[2]= | PD[X[4, 2, 5, 1], X[20, 14, 1, 13], X[8, 3, 9, 4], X[2, 9, 3, 10],
X[14, 7, 15, 8], X[18, 15, 19, 16], X[12, 6, 13, 5],
X[10, 18, 11, 17], X[16, 12, 17, 11], X[6, 19, 7, 20]] |
In[3]:= | GaussCode[Knot[10, 88]] |
Out[3]= | GaussCode[1, -4, 3, -1, 7, -10, 5, -3, 4, -8, 9, -7, 2, -5, 6, -9, 8,
-6, 10, -2] |
In[4]:= | DTCode[Knot[10, 88]] |
Out[4]= | DTCode[4, 8, 12, 14, 2, 16, 20, 18, 10, 6] |
In[5]:= | br = BR[Knot[10, 88]] |
Out[5]= | BR[5, {-1, 2, -1, -3, 2, -3, 2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[10, 88]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 88]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 88]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {NegativeAmphicheiral, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 88]][t] |
Out[10]= | -3 8 24 2 3
35 - t + -- - -- - 24 t + 8 t - t
2 t
t |
In[11]:= | Conway[Knot[10, 88]][z] |
Out[11]= | 2 4 6
1 - z + 2 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 88]} |
In[13]:= | {KnotDet[Knot[10, 88]], KnotSignature[Knot[10, 88]]} |
Out[13]= | {101, 0} |
In[14]:= | Jones[Knot[10, 88]][q] |
Out[14]= | -5 4 8 13 16 2 3 4 5
17 - q + -- - -- + -- - -- - 16 q + 13 q - 8 q + 4 q - q
4 3 2 q
q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 88]} |
In[16]:= | A2Invariant[Knot[10, 88]][q] |
Out[16]= | -16 -14 2 3 3 2 3 2 4 8
-3 - q + q + --- - --- + -- - -- + -- + 3 q - 2 q + 3 q -
12 10 8 4 2
q q q q q
10 12 14 16
3 q + 2 q + q - q |
In[17]:= | HOMFLYPT[Knot[10, 88]][a, z] |
Out[17]= | 2 2 4
-2 2 2 z 2 z 2 2 4 2 4 2 z
-1 + a + a - 3 z - -- + ---- + 2 a z - a z - 2 z + ---- +
4 2 2
a a a
2 4 6
2 a z - z |
In[18]:= | Kauffman[Knot[10, 88]][a, z] |
Out[18]= | 2 2
-2 2 z 4 z 3 2 3 z 7 z
-1 - a - a - -- - --- - 4 a z - a z + 8 z + ---- + ---- +
3 a 4 2
a a a
3 3 3
2 2 4 2 z 6 z 19 z 3 3 3 5 3
7 a z + 3 a z - -- + ---- + ----- + 19 a z + 6 a z - a z -
5 3 a
a a
4 4 5 5 5
4 6 z 10 z 2 4 4 4 z 11 z 32 z
8 z - ---- - ----- - 10 a z - 6 a z + -- - ----- - ----- -
4 2 5 3 a
a a a a
6 6
5 3 5 5 5 6 4 z 2 z 2 6
32 a z - 11 a z + a z - 12 z + ---- - ---- - 2 a z +
4 2
a a
7 7 8
4 6 7 z 14 z 7 3 7 8 6 z 2 8
4 a z + ---- + ----- + 14 a z + 7 a z + 12 z + ---- + 6 a z +
3 a 2
a a
9
2 z 9
---- + 2 a z
a |
In[19]:= | {Vassiliev[2][Knot[10, 88]], Vassiliev[3][Knot[10, 88]]} |
Out[19]= | {-1, 0} |
In[20]:= | Kh[Knot[10, 88]][q, t] |
Out[20]= | 9 1 3 1 5 3 8 5
- + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
8 8 3 3 2 5 2 5 3 7 3
---- + --- + 8 q t + 8 q t + 5 q t + 8 q t + 3 q t + 5 q t +
3 q t
q t
7 4 9 4 11 5
q t + 3 q t + q t |
In[21]:= | ColouredJones[Knot[10, 88], 2][q] |
Out[21]= | -15 4 3 12 29 7 59 84 12 150 138
275 + q - --- + --- + --- - --- + --- + -- - -- - -- + --- - --- -
14 13 12 11 10 9 8 7 6 5
q q q q q q q q q q
65 239 153 123 2 3 4 5
-- + --- - --- - --- - 123 q - 153 q + 239 q - 65 q - 138 q +
4 3 2 q
q q q
6 7 8 9 10 11 12 13
150 q - 12 q - 84 q + 59 q + 7 q - 29 q + 12 q + 3 q -
14 15
4 q + q |