10 159: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 159 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,5,-2,6,-8,1,-9,2,-10,8,3,-7,4,9,-5,10,-6,-3,7,-4/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=159|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,5,-2,6,-8,1,-9,2,-10,8,3,-7,4,9,-5,10,-6,-3,7,-4/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-7</td ><td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>3</td></tr> |
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>3</td></tr> |
||
Line 70: | Line 34: | ||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>-3+5 q^{-1} +6 q^{-2} -19 q^{-3} +11 q^{-4} +22 q^{-5} -39 q^{-6} +10 q^{-7} +39 q^{-8} -49 q^{-9} +3 q^{-10} +46 q^{-11} -43 q^{-12} -6 q^{-13} +42 q^{-14} -27 q^{-15} -13 q^{-16} +28 q^{-17} -9 q^{-18} -11 q^{-19} +10 q^{-20} -3 q^{-22} + q^{-23} </math> | |
|||
coloured_jones_3 = <math>q^4-q^3-q^2-5 q+3+16 q^{-1} + q^{-2} -27 q^{-3} -25 q^{-4} +53 q^{-5} +48 q^{-6} -58 q^{-7} -95 q^{-8} +68 q^{-9} +133 q^{-10} -54 q^{-11} -180 q^{-12} +46 q^{-13} +202 q^{-14} -20 q^{-15} -224 q^{-16} +2 q^{-17} +225 q^{-18} +21 q^{-19} -220 q^{-20} -42 q^{-21} +205 q^{-22} +62 q^{-23} -178 q^{-24} -84 q^{-25} +148 q^{-26} +98 q^{-27} -109 q^{-28} -105 q^{-29} +68 q^{-30} +99 q^{-31} -29 q^{-32} -84 q^{-33} +3 q^{-34} +58 q^{-35} +13 q^{-36} -33 q^{-37} -17 q^{-38} +16 q^{-39} +11 q^{-40} -5 q^{-41} -5 q^{-42} +3 q^{-44} - q^{-45} </math> | |
|||
{{Display Coloured Jones|J2=<math>-3+5 q^{-1} +6 q^{-2} -19 q^{-3} +11 q^{-4} +22 q^{-5} -39 q^{-6} +10 q^{-7} +39 q^{-8} -49 q^{-9} +3 q^{-10} +46 q^{-11} -43 q^{-12} -6 q^{-13} +42 q^{-14} -27 q^{-15} -13 q^{-16} +28 q^{-17} -9 q^{-18} -11 q^{-19} +10 q^{-20} -3 q^{-22} + q^{-23} </math>|J3=<math>q^4-q^3-q^2-5 q+3+16 q^{-1} + q^{-2} -27 q^{-3} -25 q^{-4} +53 q^{-5} +48 q^{-6} -58 q^{-7} -95 q^{-8} +68 q^{-9} +133 q^{-10} -54 q^{-11} -180 q^{-12} +46 q^{-13} +202 q^{-14} -20 q^{-15} -224 q^{-16} +2 q^{-17} +225 q^{-18} +21 q^{-19} -220 q^{-20} -42 q^{-21} +205 q^{-22} +62 q^{-23} -178 q^{-24} -84 q^{-25} +148 q^{-26} +98 q^{-27} -109 q^{-28} -105 q^{-29} +68 q^{-30} +99 q^{-31} -29 q^{-32} -84 q^{-33} +3 q^{-34} +58 q^{-35} +13 q^{-36} -33 q^{-37} -17 q^{-38} +16 q^{-39} +11 q^{-40} -5 q^{-41} -5 q^{-42} +3 q^{-44} - q^{-45} </math>|J4=<math>-q^8+q^7+4 q^6-3 q^4-13 q^3-13 q^2+23 q+33+31 q^{-1} -43 q^{-2} -119 q^{-3} -11 q^{-4} +94 q^{-5} +209 q^{-6} +36 q^{-7} -311 q^{-8} -232 q^{-9} +26 q^{-10} +499 q^{-11} +356 q^{-12} -396 q^{-13} -575 q^{-14} -288 q^{-15} +688 q^{-16} +801 q^{-17} -263 q^{-18} -814 q^{-19} -700 q^{-20} +668 q^{-21} +1123 q^{-22} -27 q^{-23} -844 q^{-24} -1002 q^{-25} +526 q^{-26} +1234 q^{-27} +171 q^{-28} -734 q^{-29} -1133 q^{-30} +347 q^{-31} +1177 q^{-32} +322 q^{-33} -539 q^{-34} -1145 q^{-35} +121 q^{-36} +996 q^{-37} +463 q^{-38} -255 q^{-39} -1046 q^{-40} -150 q^{-41} +675 q^{-42} +541 q^{-43} +92 q^{-44} -783 q^{-45} -355 q^{-46} +259 q^{-47} +441 q^{-48} +345 q^{-49} -387 q^{-50} -344 q^{-51} -68 q^{-52} +186 q^{-53} +347 q^{-54} -65 q^{-55} -156 q^{-56} -144 q^{-57} -17 q^{-58} +173 q^{-59} +38 q^{-60} -7 q^{-61} -66 q^{-62} -51 q^{-63} +42 q^{-64} +15 q^{-65} +17 q^{-66} -9 q^{-67} -18 q^{-68} +5 q^{-69} +5 q^{-71} -3 q^{-73} + q^{-74} </math>|J5=<math>-3 q^{11}+8 q^9+9 q^8+q^7-8 q^6-41 q^5-38 q^4+16 q^3+86 q^2+120 q+52-124 q^{-1} -295 q^{-2} -238 q^{-3} +95 q^{-4} +512 q^{-5} +581 q^{-6} +138 q^{-7} -657 q^{-8} -1148 q^{-9} -624 q^{-10} +681 q^{-11} +1694 q^{-12} +1430 q^{-13} -313 q^{-14} -2264 q^{-15} -2453 q^{-16} -304 q^{-17} +2500 q^{-18} +3528 q^{-19} +1345 q^{-20} -2518 q^{-21} -4499 q^{-22} -2455 q^{-23} +2129 q^{-24} +5219 q^{-25} +3640 q^{-26} -1581 q^{-27} -5639 q^{-28} -4590 q^{-29} +837 q^{-30} +5778 q^{-31} +5383 q^{-32} -197 q^{-33} -5683 q^{-34} -5842 q^{-35} -445 q^{-36} +5457 q^{-37} +6153 q^{-38} +908 q^{-39} -5161 q^{-40} -6232 q^{-41} -1325 q^{-42} +4800 q^{-43} +6246 q^{-44} +1674 q^{-45} -4403 q^{-46} -6154 q^{-47} -2023 q^{-48} +3900 q^{-49} +5990 q^{-50} +2420 q^{-51} -3288 q^{-52} -5736 q^{-53} -2818 q^{-54} +2517 q^{-55} +5318 q^{-56} +3223 q^{-57} -1607 q^{-58} -4729 q^{-59} -3509 q^{-60} +619 q^{-61} +3895 q^{-62} +3622 q^{-63} +343 q^{-64} -2885 q^{-65} -3436 q^{-66} -1159 q^{-67} +1779 q^{-68} +2958 q^{-69} +1675 q^{-70} -730 q^{-71} -2221 q^{-72} -1830 q^{-73} -128 q^{-74} +1400 q^{-75} +1642 q^{-76} +638 q^{-77} -632 q^{-78} -1201 q^{-79} -829 q^{-80} +67 q^{-81} +722 q^{-82} +726 q^{-83} +227 q^{-84} -300 q^{-85} -488 q^{-86} -311 q^{-87} +38 q^{-88} +264 q^{-89} +244 q^{-90} +62 q^{-91} -92 q^{-92} -137 q^{-93} -87 q^{-94} +16 q^{-95} +68 q^{-96} +50 q^{-97} +5 q^{-98} -15 q^{-99} -24 q^{-100} -17 q^{-101} +9 q^{-102} +11 q^{-103} +2 q^{-104} -5 q^{-107} +3 q^{-109} - q^{-110} </math>|J6=<math>q^{20}-q^{19}-q^{18}-4 q^{15}-6 q^{14}+12 q^{13}+18 q^{12}+17 q^{11}+12 q^{10}-15 q^9-73 q^8-119 q^7-58 q^6+82 q^5+209 q^4+324 q^3+253 q^2-134 q-630-856 q^{-1} -523 q^{-2} +198 q^{-3} +1300 q^{-4} +1951 q^{-5} +1294 q^{-6} -609 q^{-7} -2681 q^{-8} -3456 q^{-9} -2456 q^{-10} +1087 q^{-11} +4970 q^{-12} +6313 q^{-13} +3413 q^{-14} -2521 q^{-15} -7902 q^{-16} -9913 q^{-17} -4600 q^{-18} +5066 q^{-19} +13055 q^{-20} +13151 q^{-21} +4322 q^{-22} -8584 q^{-23} -18998 q^{-24} -16515 q^{-25} -2300 q^{-26} +15477 q^{-27} +24091 q^{-28} +17301 q^{-29} -1647 q^{-30} -23264 q^{-31} -28939 q^{-32} -15195 q^{-33} +10547 q^{-34} +29799 q^{-35} +29961 q^{-36} +9877 q^{-37} -20547 q^{-38} -35841 q^{-39} -26993 q^{-40} +1815 q^{-41} +28935 q^{-42} +37062 q^{-43} +19851 q^{-44} -14457 q^{-45} -36622 q^{-46} -33554 q^{-47} -5576 q^{-48} +24928 q^{-49} +38699 q^{-50} +25382 q^{-51} -9057 q^{-52} -34412 q^{-53} -35586 q^{-54} -9898 q^{-55} +20901 q^{-56} +37694 q^{-57} +27646 q^{-58} -5207 q^{-59} -31543 q^{-60} -35634 q^{-61} -12640 q^{-62} +17120 q^{-63} +35796 q^{-64} +28945 q^{-65} -1280 q^{-66} -27854 q^{-67} -35025 q^{-68} -15869 q^{-69} +11907 q^{-70} +32552 q^{-71} +30215 q^{-72} +4490 q^{-73} -21635 q^{-74} -32940 q^{-75} -20007 q^{-76} +3792 q^{-77} +26096 q^{-78} +30067 q^{-79} +11841 q^{-80} -11680 q^{-81} -27089 q^{-82} -22755 q^{-83} -6197 q^{-84} +15291 q^{-85} +25517 q^{-86} +17400 q^{-87} +248 q^{-88} -16295 q^{-89} -20316 q^{-90} -13648 q^{-91} +2574 q^{-92} +15408 q^{-93} +16740 q^{-94} +8868 q^{-95} -3732 q^{-96} -11789 q^{-97} -13892 q^{-98} -6123 q^{-99} +3758 q^{-100} +9611 q^{-101} +9724 q^{-102} +4246 q^{-103} -2066 q^{-104} -7726 q^{-105} -6979 q^{-106} -2972 q^{-107} +1709 q^{-108} +4799 q^{-109} +4796 q^{-110} +2753 q^{-111} -1394 q^{-112} -3073 q^{-113} -3146 q^{-114} -1634 q^{-115} +344 q^{-116} +1802 q^{-117} +2310 q^{-118} +876 q^{-119} -93 q^{-120} -990 q^{-121} -1126 q^{-122} -794 q^{-123} -39 q^{-124} +677 q^{-125} +499 q^{-126} +424 q^{-127} +43 q^{-128} -185 q^{-129} -363 q^{-130} -227 q^{-131} +50 q^{-132} +44 q^{-133} +140 q^{-134} +88 q^{-135} +46 q^{-136} -66 q^{-137} -63 q^{-138} -4 q^{-139} -23 q^{-140} +15 q^{-141} +15 q^{-142} +26 q^{-143} -9 q^{-144} -11 q^{-145} +5 q^{-146} -7 q^{-147} +5 q^{-150} -3 q^{-152} + q^{-153} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>-q^8+q^7+4 q^6-3 q^4-13 q^3-13 q^2+23 q+33+31 q^{-1} -43 q^{-2} -119 q^{-3} -11 q^{-4} +94 q^{-5} +209 q^{-6} +36 q^{-7} -311 q^{-8} -232 q^{-9} +26 q^{-10} +499 q^{-11} +356 q^{-12} -396 q^{-13} -575 q^{-14} -288 q^{-15} +688 q^{-16} +801 q^{-17} -263 q^{-18} -814 q^{-19} -700 q^{-20} +668 q^{-21} +1123 q^{-22} -27 q^{-23} -844 q^{-24} -1002 q^{-25} +526 q^{-26} +1234 q^{-27} +171 q^{-28} -734 q^{-29} -1133 q^{-30} +347 q^{-31} +1177 q^{-32} +322 q^{-33} -539 q^{-34} -1145 q^{-35} +121 q^{-36} +996 q^{-37} +463 q^{-38} -255 q^{-39} -1046 q^{-40} -150 q^{-41} +675 q^{-42} +541 q^{-43} +92 q^{-44} -783 q^{-45} -355 q^{-46} +259 q^{-47} +441 q^{-48} +345 q^{-49} -387 q^{-50} -344 q^{-51} -68 q^{-52} +186 q^{-53} +347 q^{-54} -65 q^{-55} -156 q^{-56} -144 q^{-57} -17 q^{-58} +173 q^{-59} +38 q^{-60} -7 q^{-61} -66 q^{-62} -51 q^{-63} +42 q^{-64} +15 q^{-65} +17 q^{-66} -9 q^{-67} -18 q^{-68} +5 q^{-69} +5 q^{-71} -3 q^{-73} + q^{-74} </math> | |
|||
coloured_jones_5 = <math>-3 q^{11}+8 q^9+9 q^8+q^7-8 q^6-41 q^5-38 q^4+16 q^3+86 q^2+120 q+52-124 q^{-1} -295 q^{-2} -238 q^{-3} +95 q^{-4} +512 q^{-5} +581 q^{-6} +138 q^{-7} -657 q^{-8} -1148 q^{-9} -624 q^{-10} +681 q^{-11} +1694 q^{-12} +1430 q^{-13} -313 q^{-14} -2264 q^{-15} -2453 q^{-16} -304 q^{-17} +2500 q^{-18} +3528 q^{-19} +1345 q^{-20} -2518 q^{-21} -4499 q^{-22} -2455 q^{-23} +2129 q^{-24} +5219 q^{-25} +3640 q^{-26} -1581 q^{-27} -5639 q^{-28} -4590 q^{-29} +837 q^{-30} +5778 q^{-31} +5383 q^{-32} -197 q^{-33} -5683 q^{-34} -5842 q^{-35} -445 q^{-36} +5457 q^{-37} +6153 q^{-38} +908 q^{-39} -5161 q^{-40} -6232 q^{-41} -1325 q^{-42} +4800 q^{-43} +6246 q^{-44} +1674 q^{-45} -4403 q^{-46} -6154 q^{-47} -2023 q^{-48} +3900 q^{-49} +5990 q^{-50} +2420 q^{-51} -3288 q^{-52} -5736 q^{-53} -2818 q^{-54} +2517 q^{-55} +5318 q^{-56} +3223 q^{-57} -1607 q^{-58} -4729 q^{-59} -3509 q^{-60} +619 q^{-61} +3895 q^{-62} +3622 q^{-63} +343 q^{-64} -2885 q^{-65} -3436 q^{-66} -1159 q^{-67} +1779 q^{-68} +2958 q^{-69} +1675 q^{-70} -730 q^{-71} -2221 q^{-72} -1830 q^{-73} -128 q^{-74} +1400 q^{-75} +1642 q^{-76} +638 q^{-77} -632 q^{-78} -1201 q^{-79} -829 q^{-80} +67 q^{-81} +722 q^{-82} +726 q^{-83} +227 q^{-84} -300 q^{-85} -488 q^{-86} -311 q^{-87} +38 q^{-88} +264 q^{-89} +244 q^{-90} +62 q^{-91} -92 q^{-92} -137 q^{-93} -87 q^{-94} +16 q^{-95} +68 q^{-96} +50 q^{-97} +5 q^{-98} -15 q^{-99} -24 q^{-100} -17 q^{-101} +9 q^{-102} +11 q^{-103} +2 q^{-104} -5 q^{-107} +3 q^{-109} - q^{-110} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{20}-q^{19}-q^{18}-4 q^{15}-6 q^{14}+12 q^{13}+18 q^{12}+17 q^{11}+12 q^{10}-15 q^9-73 q^8-119 q^7-58 q^6+82 q^5+209 q^4+324 q^3+253 q^2-134 q-630-856 q^{-1} -523 q^{-2} +198 q^{-3} +1300 q^{-4} +1951 q^{-5} +1294 q^{-6} -609 q^{-7} -2681 q^{-8} -3456 q^{-9} -2456 q^{-10} +1087 q^{-11} +4970 q^{-12} +6313 q^{-13} +3413 q^{-14} -2521 q^{-15} -7902 q^{-16} -9913 q^{-17} -4600 q^{-18} +5066 q^{-19} +13055 q^{-20} +13151 q^{-21} +4322 q^{-22} -8584 q^{-23} -18998 q^{-24} -16515 q^{-25} -2300 q^{-26} +15477 q^{-27} +24091 q^{-28} +17301 q^{-29} -1647 q^{-30} -23264 q^{-31} -28939 q^{-32} -15195 q^{-33} +10547 q^{-34} +29799 q^{-35} +29961 q^{-36} +9877 q^{-37} -20547 q^{-38} -35841 q^{-39} -26993 q^{-40} +1815 q^{-41} +28935 q^{-42} +37062 q^{-43} +19851 q^{-44} -14457 q^{-45} -36622 q^{-46} -33554 q^{-47} -5576 q^{-48} +24928 q^{-49} +38699 q^{-50} +25382 q^{-51} -9057 q^{-52} -34412 q^{-53} -35586 q^{-54} -9898 q^{-55} +20901 q^{-56} +37694 q^{-57} +27646 q^{-58} -5207 q^{-59} -31543 q^{-60} -35634 q^{-61} -12640 q^{-62} +17120 q^{-63} +35796 q^{-64} +28945 q^{-65} -1280 q^{-66} -27854 q^{-67} -35025 q^{-68} -15869 q^{-69} +11907 q^{-70} +32552 q^{-71} +30215 q^{-72} +4490 q^{-73} -21635 q^{-74} -32940 q^{-75} -20007 q^{-76} +3792 q^{-77} +26096 q^{-78} +30067 q^{-79} +11841 q^{-80} -11680 q^{-81} -27089 q^{-82} -22755 q^{-83} -6197 q^{-84} +15291 q^{-85} +25517 q^{-86} +17400 q^{-87} +248 q^{-88} -16295 q^{-89} -20316 q^{-90} -13648 q^{-91} +2574 q^{-92} +15408 q^{-93} +16740 q^{-94} +8868 q^{-95} -3732 q^{-96} -11789 q^{-97} -13892 q^{-98} -6123 q^{-99} +3758 q^{-100} +9611 q^{-101} +9724 q^{-102} +4246 q^{-103} -2066 q^{-104} -7726 q^{-105} -6979 q^{-106} -2972 q^{-107} +1709 q^{-108} +4799 q^{-109} +4796 q^{-110} +2753 q^{-111} -1394 q^{-112} -3073 q^{-113} -3146 q^{-114} -1634 q^{-115} +344 q^{-116} +1802 q^{-117} +2310 q^{-118} +876 q^{-119} -93 q^{-120} -990 q^{-121} -1126 q^{-122} -794 q^{-123} -39 q^{-124} +677 q^{-125} +499 q^{-126} +424 q^{-127} +43 q^{-128} -185 q^{-129} -363 q^{-130} -227 q^{-131} +50 q^{-132} +44 q^{-133} +140 q^{-134} +88 q^{-135} +46 q^{-136} -66 q^{-137} -63 q^{-138} -4 q^{-139} -23 q^{-140} +15 q^{-141} +15 q^{-142} +26 q^{-143} -9 q^{-144} -11 q^{-145} +5 q^{-146} -7 q^{-147} +5 q^{-150} -3 q^{-152} + q^{-153} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 159]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 9, 4, 8], X[18, 11, 19, 12], X[20, 13, 1, 14], |
|||
X[15, 2, 16, 3], X[17, 5, 18, 4], X[12, 19, 13, 20], X[5, 10, 6, 11], |
X[15, 2, 16, 3], X[17, 5, 18, 4], X[12, 19, 13, 20], X[5, 10, 6, 11], |
||
X[7, 15, 8, 14], X[9, 16, 10, 17]]</nowiki></pre></td></tr> |
X[7, 15, 8, 14], X[9, 16, 10, 17]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, |
|||
-3, 7, -4]</nowiki></pre></td></tr> |
-3, 7, -4]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 10, 14, 16, -18, -20, 2, 4, -12]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 159]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -2, 1, -2, 1, 1, -2, -2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 159]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_159_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 159]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 159]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 9 2 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 159]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_159_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 159]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 159]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 9 2 3 |
|||
-11 + t - -- + - + 9 t - 4 t + t |
-11 + t - -- + - + 9 t - 4 t + t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 159]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 2 z + 2 z + z</nowiki></pre></td></tr> |
1 + 2 z + 2 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 159]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 159]], KnotSignature[Knot[10, 159]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 159]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 3 5 6 7 7 5 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 159]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 3 5 6 7 7 5 4 |
|||
-1 - q + -- - -- + -- - -- + -- - -- + - |
-1 - q + -- - -- + -- - -- + -- - -- + - |
||
7 6 5 4 3 2 q |
7 6 5 4 3 2 q |
||
q q q q q q</nowiki></pre></td></tr> |
q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 159]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 159]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -24 -22 -20 -16 2 -12 -10 2 2 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 159]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -24 -22 -20 -16 2 -12 -10 2 2 2 |
|||
-1 - q + q - q + q - --- + q - q + -- + -- + -- |
-1 - q + q - q + q - --- + q - q + -- + -- + -- |
||
14 8 6 2 |
14 8 6 2 |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 159]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 4 2 6 2 2 4 4 4 6 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 4 2 6 2 2 4 4 4 6 4 |
|||
a + a - a - a z + 5 a z - 2 a z - a z + 4 a z - a z + |
a + a - a - a z + 5 a z - 2 a z - a z + 4 a z - a z + |
||
4 6 |
4 6 |
||
a z</nowiki></pre></td></tr> |
a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 159]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 9 2 2 4 2 6 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 9 2 2 4 2 6 2 |
|||
-a + a + a + a z + a z + a z + a z - 2 a z - 4 a z + a z + |
-a + a + a + a z + a z + a z + a z - 2 a z - 4 a z + a z + |
||
Line 162: | Line 111: | ||
3 7 5 7 7 7 4 8 6 8 |
3 7 5 7 7 7 4 8 6 8 |
||
a z + 4 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
a z + 4 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 159]], Vassiliev[3][Knot[10, 159]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, -3}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 159]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 2 1 3 2 3 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 159]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 2 1 3 2 3 3 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
||
Line 176: | Line 123: | ||
9 3 7 3 7 2 5 2 5 3 |
9 3 7 3 7 2 5 2 5 3 |
||
q t q t q t q t q t q t</nowiki></pre></td></tr> |
q t q t q t q t q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 159], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -23 3 10 11 9 28 13 27 42 6 43 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -23 3 10 11 9 28 13 27 42 6 43 |
|||
-3 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + |
-3 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + |
||
22 20 19 18 17 16 15 14 13 12 |
22 20 19 18 17 16 15 14 13 12 |
||
Line 187: | Line 133: | ||
11 10 9 8 7 6 5 4 3 2 q |
11 10 9 8 7 6 5 4 3 2 q |
||
q q q q q q q q q q</nowiki></pre></td></tr> |
q q q q q q q q q q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:38, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 159's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1627 X3948 X18,11,19,12 X20,13,1,14 X15,2,16,3 X17,5,18,4 X12,19,13,20 X5,10,6,11 X7,15,8,14 X9,16,10,17 |
Gauss code | -1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, -3, 7, -4 |
Dowker-Thistlethwaite code | 6 8 10 14 16 -18 -20 2 4 -12 |
Conway Notation | [-30:2:20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{1, 6}, {2, 8}, {4, 1}, {7, 5}, {6, 9}, {8, 3}, {5, 10}, {9, 2}, {10, 4}, {3, 7}] |
[edit Notes on presentations of 10 159]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 159"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3948 X18,11,19,12 X20,13,1,14 X15,2,16,3 X17,5,18,4 X12,19,13,20 X5,10,6,11 X7,15,8,14 X9,16,10,17 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, -3, 7, -4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 10 14 16 -18 -20 2 4 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[-30:2:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{1, 6}, {2, 8}, {4, 1}, {7, 5}, {6, 9}, {8, 3}, {5, 10}, {9, 2}, {10, 4}, {3, 7}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 159"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 39, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 159"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (2, -3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 159. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|