10 151: Difference between revisions
| DrorsRobot (talk | contribs) No edit summary | No edit summary | ||
| Line 1: | Line 1: | ||
| <!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> | <!-- This page was  generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> | ||
| <!--  --> | <!--  --> <!-- | ||
|  --> | |||
| {{Rolfsen Knot Page| | |||
| <!--  --> | |||
| n = 10 | | |||
| <!-- --> | |||
| k = 151 | | |||
| <!-- provide an anchor so we can return to the top of the page --> | |||
| KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,3,-9,-10,2,-4,8,9,-3,-6,7,-8,4,-5,6,-7,5/goTop.html | | |||
| <span id="top"></span> | |||
| braid_table     = <table cellspacing=0 cellpadding=0 border=0> | |||
| <!-- --> | |||
| <!-- this relies on transclusion for next and previous links --> | |||
| {{Knot Navigation Links|ext=gif}} | |||
| {{Rolfsen Knot Page Header|n=10|k=151|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,3,-9,-10,2,-4,8,9,-3,-6,7,-8,4,-5,6,-7,5/goTop.html}} | |||
| <br style="clear:both" /> | |||
| {{:{{PAGENAME}} Further Notes and Views}} | |||
| {{Knot Presentations}} | |||
| <center><table border=1 cellpadding=10><tr align=center valign=top> | |||
| <td> | |||
| [[Braid Representatives|Minimum Braid Representative]]: | |||
| <table cellspacing=0 cellpadding=0 border=0> | |||
| <tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> | <tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> | ||
| <tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> | <tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> | ||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> | <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> | ||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> | <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> | ||
| </table> | </table> | | ||
| braid_crossings = 11 | | |||
| braid_width     = 4 | | |||
| [[Invariants from Braid Theory|Length]] is 11, width is 4. | |||
| braid_index     = 4 | | |||
| same_alexander  = [[K11n54]], [[K11n129]],  | | |||
| [[Invariants from Braid Theory|Braid index]] is 4. | |||
| same_jones      =  | | |||
| </td> | |||
| khovanov_table  = <table border=1> | |||
| <td> | |||
| [[Lightly Documented Features|A Morse Link Presentation]]: | |||
| [[Image:{{PAGENAME}}_ML.gif]] | |||
| </td> | |||
| </tr></table></center> | |||
| {{3D Invariants}} | |||
| {{4D Invariants}} | |||
| {{Polynomial Invariants}} | |||
| === "Similar" Knots (within the Atlas) === | |||
| Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: | |||
| {[[K11n54]], [[K11n129]], ...} | |||
| Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):  | |||
| {...} | |||
| {{Vassiliev Invariants}} | |||
| {{Khovanov Homology|table=<table border=1> | |||
| <tr align=center> | <tr align=center> | ||
| <td width=15.3846%><table cellpadding=0 cellspacing=0> | <td width=15.3846%><table cellpadding=0 cellspacing=0> | ||
|   <tr><td>\</td><td> </td><td>r</td></tr> | |||
| <tr><td> </td><td> \ </td><td> </td></tr> | <tr><td> </td><td> \ </td><td> </td></tr> | ||
| <tr><td>j</td><td> </td><td>\</td></tr> | <tr><td>j</td><td> </td><td>\</td></tr> | ||
| </table></td> | </table></td> | ||
|   <td width=7.69231%>-3</td    ><td width=7.69231%>-2</td    ><td width=7.69231%>-1</td    ><td width=7.69231%>0</td    ><td width=7.69231%>1</td    ><td width=7.69231%>2</td    ><td width=7.69231%>3</td    ><td width=7.69231%>4</td    ><td width=7.69231%>5</td    ><td width=15.3846%>χ</td></tr> | |||
| <tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>-2</td></tr> | <tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>-2</td></tr> | ||
| <tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> | <tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> | ||
| Line 71: | Line 35: | ||
| <tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | <tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | ||
| <tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | <tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | ||
| </table> | </table> | | ||
| coloured_jones_2 = <math>q^{18}+q^{17}-7 q^{16}+6 q^{15}+10 q^{14}-26 q^{13}+10 q^{12}+31 q^{11}-47 q^{10}+6 q^9+51 q^8-55 q^7-2 q^6+57 q^5-46 q^4-12 q^3+49 q^2-27 q-17+30 q^{-1} -8 q^{-2} -12 q^{-3} +10 q^{-4} -3 q^{-6} + q^{-7} </math> | | |||
| coloured_jones_3 = <math>-2 q^{35}+2 q^{34}+2 q^{33}+5 q^{32}-15 q^{31}-6 q^{30}+22 q^{29}+27 q^{28}-38 q^{27}-56 q^{26}+47 q^{25}+99 q^{24}-49 q^{23}-147 q^{22}+36 q^{21}+195 q^{20}-13 q^{19}-238 q^{18}-9 q^{17}+257 q^{16}+46 q^{15}-277 q^{14}-65 q^{13}+265 q^{12}+98 q^{11}-258 q^{10}-110 q^9+223 q^8+135 q^7-191 q^6-141 q^5+142 q^4+150 q^3-99 q^2-137 q+49+120 q^{-1} -13 q^{-2} -92 q^{-3} -10 q^{-4} +60 q^{-5} +20 q^{-6} -32 q^{-7} -20 q^{-8} +15 q^{-9} +12 q^{-10} -5 q^{-11} -5 q^{-12} +3 q^{-14} - q^{-15} </math> | | |||
| {{Display Coloured Jones|J2=<math>q^{18}+q^{17}-7 q^{16}+6 q^{15}+10 q^{14}-26 q^{13}+10 q^{12}+31 q^{11}-47 q^{10}+6 q^9+51 q^8-55 q^7-2 q^6+57 q^5-46 q^4-12 q^3+49 q^2-27 q-17+30 q^{-1} -8 q^{-2} -12 q^{-3} +10 q^{-4} -3 q^{-6} + q^{-7} </math>|J3=<math>-2 q^{35}+2 q^{34}+2 q^{33}+5 q^{32}-15 q^{31}-6 q^{30}+22 q^{29}+27 q^{28}-38 q^{27}-56 q^{26}+47 q^{25}+99 q^{24}-49 q^{23}-147 q^{22}+36 q^{21}+195 q^{20}-13 q^{19}-238 q^{18}-9 q^{17}+257 q^{16}+46 q^{15}-277 q^{14}-65 q^{13}+265 q^{12}+98 q^{11}-258 q^{10}-110 q^9+223 q^8+135 q^7-191 q^6-141 q^5+142 q^4+150 q^3-99 q^2-137 q+49+120 q^{-1} -13 q^{-2} -92 q^{-3} -10 q^{-4} +60 q^{-5} +20 q^{-6} -32 q^{-7} -20 q^{-8} +15 q^{-9} +12 q^{-10} -5 q^{-11} -5 q^{-12} +3 q^{-14} - q^{-15} </math>|J4=<math>q^{58}+q^{57}-3 q^{56}-6 q^{55}+4 q^{54}+7 q^{53}+17 q^{52}-7 q^{51}-51 q^{50}-9 q^{49}+27 q^{48}+107 q^{47}+37 q^{46}-168 q^{45}-131 q^{44}-18 q^{43}+315 q^{42}+271 q^{41}-260 q^{40}-414 q^{39}-290 q^{38}+515 q^{37}+725 q^{36}-142 q^{35}-700 q^{34}-794 q^{33}+519 q^{32}+1196 q^{31}+179 q^{30}-795 q^{29}-1295 q^{28}+328 q^{27}+1457 q^{26}+514 q^{25}-685 q^{24}-1592 q^{23}+79 q^{22}+1475 q^{21}+735 q^{20}-473 q^{19}-1657 q^{18}-148 q^{17}+1305 q^{16}+848 q^{15}-195 q^{14}-1540 q^{13}-368 q^{12}+978 q^{11}+873 q^{10}+140 q^9-1245 q^8-553 q^7+519 q^6+756 q^5+449 q^4-784 q^3-583 q^2+62 q+461+558 q^{-1} -294 q^{-2} -394 q^{-3} -191 q^{-4} +121 q^{-5} +409 q^{-6} -130 q^{-8} -175 q^{-9} -60 q^{-10} +171 q^{-11} +52 q^{-12} +11 q^{-13} -64 q^{-14} -61 q^{-15} +38 q^{-16} +15 q^{-17} +20 q^{-18} -8 q^{-19} -19 q^{-20} +5 q^{-21} +5 q^{-23} -3 q^{-25} + q^{-26} </math>|J5=<math>-2 q^{86}+2 q^{85}+4 q^{83}+5 q^{82}-7 q^{81}-22 q^{80}-q^{79}+10 q^{78}+34 q^{77}+60 q^{76}-18 q^{75}-115 q^{74}-113 q^{73}-24 q^{72}+158 q^{71}+325 q^{70}+168 q^{69}-262 q^{68}-572 q^{67}-473 q^{66}+175 q^{65}+958 q^{64}+1030 q^{63}+70 q^{62}-1290 q^{61}-1796 q^{60}-678 q^{59}+1477 q^{58}+2730 q^{57}+1616 q^{56}-1360 q^{55}-3665 q^{54}-2850 q^{53}+886 q^{52}+4421 q^{51}+4240 q^{50}-67 q^{49}-4887 q^{48}-5597 q^{47}-990 q^{46}+5020 q^{45}+6757 q^{44}+2119 q^{43}-4843 q^{42}-7587 q^{41}-3238 q^{40}+4461 q^{39}+8157 q^{38}+4098 q^{37}-3939 q^{36}-8344 q^{35}-4864 q^{34}+3383 q^{33}+8418 q^{32}+5307 q^{31}-2827 q^{30}-8185 q^{29}-5723 q^{28}+2252 q^{27}+7951 q^{26}+5910 q^{25}-1656 q^{24}-7456 q^{23}-6134 q^{22}+971 q^{21}+6930 q^{20}+6187 q^{19}-209 q^{18}-6116 q^{17}-6228 q^{16}-640 q^{15}+5202 q^{14}+6016 q^{13}+1502 q^{12}-4009 q^{11}-5657 q^{10}-2276 q^9+2758 q^8+4966 q^7+2820 q^6-1410 q^5-4063 q^4-3078 q^3+267 q^2+2944 q+2942+649 q^{-1} -1809 q^{-2} -2498 q^{-3} -1166 q^{-4} +806 q^{-5} +1834 q^{-6} +1306 q^{-7} -79 q^{-8} -1114 q^{-9} -1148 q^{-10} -340 q^{-11} +528 q^{-12} +819 q^{-13} +458 q^{-14} -126 q^{-15} -464 q^{-16} -406 q^{-17} -76 q^{-18} +212 q^{-19} +268 q^{-20} +116 q^{-21} -54 q^{-22} -132 q^{-23} -106 q^{-24} -6 q^{-25} +62 q^{-26} +56 q^{-27} +12 q^{-28} -12 q^{-29} -24 q^{-30} -20 q^{-31} +8 q^{-32} +12 q^{-33} +2 q^{-34} -5 q^{-37} +3 q^{-39} - q^{-40} </math>|J6=<math>q^{120}+q^{119}-3 q^{118}-2 q^{117}-2 q^{116}+q^{115}+2 q^{114}+13 q^{113}+21 q^{112}-8 q^{111}-41 q^{110}-48 q^{109}-17 q^{108}+6 q^{107}+113 q^{106}+183 q^{105}+92 q^{104}-146 q^{103}-357 q^{102}-341 q^{101}-243 q^{100}+327 q^{99}+915 q^{98}+970 q^{97}+231 q^{96}-928 q^{95}-1710 q^{94}-2000 q^{93}-429 q^{92}+2055 q^{91}+3803 q^{90}+3118 q^{89}+94 q^{88}-3635 q^{87}-6799 q^{86}-5086 q^{85}+735 q^{84}+7577 q^{83}+10229 q^{82}+6481 q^{81}-2214 q^{80}-12818 q^{79}-15176 q^{78}-7357 q^{77}+7382 q^{76}+18698 q^{75}+19187 q^{74}+6932 q^{73}-14315 q^{72}-26637 q^{71}-22143 q^{70}-864 q^{69}+22214 q^{68}+32959 q^{67}+22463 q^{66}-7769 q^{65}-32841 q^{64}-37349 q^{63}-14781 q^{62}+17946 q^{61}+41183 q^{60}+37568 q^{59}+3743 q^{58}-31588 q^{57}-46734 q^{56}-27737 q^{55}+9250 q^{54}+42256 q^{53}+46837 q^{52}+14301 q^{51}-26107 q^{50}-49357 q^{49}-35575 q^{48}+1077 q^{47}+39177 q^{46}+50048 q^{45}+20995 q^{44}-20269 q^{43}-47977 q^{42}-38806 q^{41}-4769 q^{40}+34917 q^{39}+49793 q^{38}+24848 q^{37}-14993 q^{36}-44855 q^{35}-39861 q^{34}-9656 q^{33}+29765 q^{32}+47813 q^{31}+28065 q^{30}-8734 q^{29}-39836 q^{28}-39980 q^{27}-15505 q^{26}+22101 q^{25}+43550 q^{24}+31297 q^{23}+47 q^{22}-31223 q^{21}-37992 q^{20}-22209 q^{19}+10784 q^{18}+35021 q^{17}+32471 q^{16}+10341 q^{15}-18165 q^{14}-31284 q^{13}-26575 q^{12}-2302 q^{11}+21452 q^{10}+28161 q^9+17824 q^8-3343 q^7-19019 q^6-24437 q^5-11863 q^4+6209 q^3+17586 q^2+17892 q+7230-5189 q^{-1} -15429 q^{-2} -13277 q^{-3} -4234 q^{-4} +5443 q^{-5} +10909 q^{-6} +9321 q^{-7} +3615 q^{-8} -5026 q^{-9} -7871 q^{-10} -6366 q^{-11} -1807 q^{-12} +2900 q^{-13} +5254 q^{-14} +4911 q^{-15} +740 q^{-16} -1901 q^{-17} -3355 q^{-18} -2721 q^{-19} -952 q^{-20} +1066 q^{-21} +2402 q^{-22} +1415 q^{-23} +571 q^{-24} -589 q^{-25} -1072 q^{-26} -1070 q^{-27} -375 q^{-28} +490 q^{-29} +457 q^{-30} +526 q^{-31} +183 q^{-32} -73 q^{-33} -351 q^{-34} -274 q^{-35} + q^{-36} +3 q^{-37} +131 q^{-38} +102 q^{-39} +72 q^{-40} -56 q^{-41} -65 q^{-42} -7 q^{-43} -29 q^{-44} +12 q^{-45} +15 q^{-46} +29 q^{-47} -8 q^{-48} -12 q^{-49} +5 q^{-50} -7 q^{-51} +5 q^{-54} -3 q^{-56} + q^{-57} </math>|J7=Not Available}} | |||
| coloured_jones_4 = <math>q^{58}+q^{57}-3 q^{56}-6 q^{55}+4 q^{54}+7 q^{53}+17 q^{52}-7 q^{51}-51 q^{50}-9 q^{49}+27 q^{48}+107 q^{47}+37 q^{46}-168 q^{45}-131 q^{44}-18 q^{43}+315 q^{42}+271 q^{41}-260 q^{40}-414 q^{39}-290 q^{38}+515 q^{37}+725 q^{36}-142 q^{35}-700 q^{34}-794 q^{33}+519 q^{32}+1196 q^{31}+179 q^{30}-795 q^{29}-1295 q^{28}+328 q^{27}+1457 q^{26}+514 q^{25}-685 q^{24}-1592 q^{23}+79 q^{22}+1475 q^{21}+735 q^{20}-473 q^{19}-1657 q^{18}-148 q^{17}+1305 q^{16}+848 q^{15}-195 q^{14}-1540 q^{13}-368 q^{12}+978 q^{11}+873 q^{10}+140 q^9-1245 q^8-553 q^7+519 q^6+756 q^5+449 q^4-784 q^3-583 q^2+62 q+461+558 q^{-1} -294 q^{-2} -394 q^{-3} -191 q^{-4} +121 q^{-5} +409 q^{-6} -130 q^{-8} -175 q^{-9} -60 q^{-10} +171 q^{-11} +52 q^{-12} +11 q^{-13} -64 q^{-14} -61 q^{-15} +38 q^{-16} +15 q^{-17} +20 q^{-18} -8 q^{-19} -19 q^{-20} +5 q^{-21} +5 q^{-23} -3 q^{-25} + q^{-26} </math> | | |||
| coloured_jones_5 = <math>-2 q^{86}+2 q^{85}+4 q^{83}+5 q^{82}-7 q^{81}-22 q^{80}-q^{79}+10 q^{78}+34 q^{77}+60 q^{76}-18 q^{75}-115 q^{74}-113 q^{73}-24 q^{72}+158 q^{71}+325 q^{70}+168 q^{69}-262 q^{68}-572 q^{67}-473 q^{66}+175 q^{65}+958 q^{64}+1030 q^{63}+70 q^{62}-1290 q^{61}-1796 q^{60}-678 q^{59}+1477 q^{58}+2730 q^{57}+1616 q^{56}-1360 q^{55}-3665 q^{54}-2850 q^{53}+886 q^{52}+4421 q^{51}+4240 q^{50}-67 q^{49}-4887 q^{48}-5597 q^{47}-990 q^{46}+5020 q^{45}+6757 q^{44}+2119 q^{43}-4843 q^{42}-7587 q^{41}-3238 q^{40}+4461 q^{39}+8157 q^{38}+4098 q^{37}-3939 q^{36}-8344 q^{35}-4864 q^{34}+3383 q^{33}+8418 q^{32}+5307 q^{31}-2827 q^{30}-8185 q^{29}-5723 q^{28}+2252 q^{27}+7951 q^{26}+5910 q^{25}-1656 q^{24}-7456 q^{23}-6134 q^{22}+971 q^{21}+6930 q^{20}+6187 q^{19}-209 q^{18}-6116 q^{17}-6228 q^{16}-640 q^{15}+5202 q^{14}+6016 q^{13}+1502 q^{12}-4009 q^{11}-5657 q^{10}-2276 q^9+2758 q^8+4966 q^7+2820 q^6-1410 q^5-4063 q^4-3078 q^3+267 q^2+2944 q+2942+649 q^{-1} -1809 q^{-2} -2498 q^{-3} -1166 q^{-4} +806 q^{-5} +1834 q^{-6} +1306 q^{-7} -79 q^{-8} -1114 q^{-9} -1148 q^{-10} -340 q^{-11} +528 q^{-12} +819 q^{-13} +458 q^{-14} -126 q^{-15} -464 q^{-16} -406 q^{-17} -76 q^{-18} +212 q^{-19} +268 q^{-20} +116 q^{-21} -54 q^{-22} -132 q^{-23} -106 q^{-24} -6 q^{-25} +62 q^{-26} +56 q^{-27} +12 q^{-28} -12 q^{-29} -24 q^{-30} -20 q^{-31} +8 q^{-32} +12 q^{-33} +2 q^{-34} -5 q^{-37} +3 q^{-39} - q^{-40} </math> | | |||
| {{Computer Talk Header}} | |||
| coloured_jones_6 = <math>q^{120}+q^{119}-3 q^{118}-2 q^{117}-2 q^{116}+q^{115}+2 q^{114}+13 q^{113}+21 q^{112}-8 q^{111}-41 q^{110}-48 q^{109}-17 q^{108}+6 q^{107}+113 q^{106}+183 q^{105}+92 q^{104}-146 q^{103}-357 q^{102}-341 q^{101}-243 q^{100}+327 q^{99}+915 q^{98}+970 q^{97}+231 q^{96}-928 q^{95}-1710 q^{94}-2000 q^{93}-429 q^{92}+2055 q^{91}+3803 q^{90}+3118 q^{89}+94 q^{88}-3635 q^{87}-6799 q^{86}-5086 q^{85}+735 q^{84}+7577 q^{83}+10229 q^{82}+6481 q^{81}-2214 q^{80}-12818 q^{79}-15176 q^{78}-7357 q^{77}+7382 q^{76}+18698 q^{75}+19187 q^{74}+6932 q^{73}-14315 q^{72}-26637 q^{71}-22143 q^{70}-864 q^{69}+22214 q^{68}+32959 q^{67}+22463 q^{66}-7769 q^{65}-32841 q^{64}-37349 q^{63}-14781 q^{62}+17946 q^{61}+41183 q^{60}+37568 q^{59}+3743 q^{58}-31588 q^{57}-46734 q^{56}-27737 q^{55}+9250 q^{54}+42256 q^{53}+46837 q^{52}+14301 q^{51}-26107 q^{50}-49357 q^{49}-35575 q^{48}+1077 q^{47}+39177 q^{46}+50048 q^{45}+20995 q^{44}-20269 q^{43}-47977 q^{42}-38806 q^{41}-4769 q^{40}+34917 q^{39}+49793 q^{38}+24848 q^{37}-14993 q^{36}-44855 q^{35}-39861 q^{34}-9656 q^{33}+29765 q^{32}+47813 q^{31}+28065 q^{30}-8734 q^{29}-39836 q^{28}-39980 q^{27}-15505 q^{26}+22101 q^{25}+43550 q^{24}+31297 q^{23}+47 q^{22}-31223 q^{21}-37992 q^{20}-22209 q^{19}+10784 q^{18}+35021 q^{17}+32471 q^{16}+10341 q^{15}-18165 q^{14}-31284 q^{13}-26575 q^{12}-2302 q^{11}+21452 q^{10}+28161 q^9+17824 q^8-3343 q^7-19019 q^6-24437 q^5-11863 q^4+6209 q^3+17586 q^2+17892 q+7230-5189 q^{-1} -15429 q^{-2} -13277 q^{-3} -4234 q^{-4} +5443 q^{-5} +10909 q^{-6} +9321 q^{-7} +3615 q^{-8} -5026 q^{-9} -7871 q^{-10} -6366 q^{-11} -1807 q^{-12} +2900 q^{-13} +5254 q^{-14} +4911 q^{-15} +740 q^{-16} -1901 q^{-17} -3355 q^{-18} -2721 q^{-19} -952 q^{-20} +1066 q^{-21} +2402 q^{-22} +1415 q^{-23} +571 q^{-24} -589 q^{-25} -1072 q^{-26} -1070 q^{-27} -375 q^{-28} +490 q^{-29} +457 q^{-30} +526 q^{-31} +183 q^{-32} -73 q^{-33} -351 q^{-34} -274 q^{-35} + q^{-36} +3 q^{-37} +131 q^{-38} +102 q^{-39} +72 q^{-40} -56 q^{-41} -65 q^{-42} -7 q^{-43} -29 q^{-44} +12 q^{-45} +15 q^{-46} +29 q^{-47} -8 q^{-48} -12 q^{-49} +5 q^{-50} -7 q^{-51} +5 q^{-54} -3 q^{-56} + q^{-57} </math> | | |||
| coloured_jones_7 =  | | |||
| <table> | |||
| computer_talk =  | |||
| <tr valign=top> | |||
|          <table> | |||
| <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td> | |||
|          <tr valign=top> | |||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | |||
|          <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td> | |||
| </tr> | |||
|          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | |||
|          </tr> | |||
|          <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 151]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 151]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[9, 17, 10, 16],  | |||
|   X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14],  |   X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14],  | ||
|   X[15, 11, 16, 10], X[6, 12, 7, 11], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |   X[15, 11, 16, 10], X[6, 12, 7, 11], X[7, 2, 8, 3]]</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 151]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -4, 8, 9, -3, -6, 7, -8, 4, -5,  | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -4, 8, 9, -3, -6, 7, -8, 4, -5,  | |||
|   6, -7, 5]</nowiki></pre></td></tr> |   6, -7, 5]</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 151]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, -12, 2, 16, -6, 18, 10, 20, 14]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 151]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, 2, -1, -1, 3, -2, 1, 3, -2}]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 151]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre |          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Knot[10, 151]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:10_151_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[8]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 151]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 151]][t]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -3   4    10             2    3 | |||
| <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 151]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_151_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 151]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 151]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -3   4    10             2    3 | |||
| -13 + t   - -- + -- + 10 t - 4 t  + t | -13 + t   - -- + -- + 10 t - 4 t  + t | ||
|              2   t |              2   t | ||
|             t</nowiki></pre></td></tr> |             t</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 151]][z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      4    6 | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      4    6 | |||
| 1 + 3 z  + 2 z  + z</nowiki></pre></td></tr> | 1 + 3 z  + 2 z  + z</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 151], Knot[11, NonAlternating, 54],  | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 151], Knot[11, NonAlternating, 54],  | |||
|   Knot[11, NonAlternating, 129]}</nowiki></pre></td></tr> |   Knot[11, NonAlternating, 129]}</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 151]], KnotSignature[Knot[10, 151]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{43, 2}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 151]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -2   3            2      3      4      5      6 | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 151]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -2   3            2      3      4      5      6 | |||
| -5 - q   + - + 7 q - 7 q  + 8 q  - 6 q  + 4 q  - 2 q | -5 - q   + - + 7 q - 7 q  + 8 q  - 6 q  + 4 q  - 2 q | ||
|            q</nowiki></pre></td></tr> |            q</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 151]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 151]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  -6    -4    -2      2    4      6      10    12    14    16      18 | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 151]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  -6    -4    -2      2    4      6      10    12    14    16      18 | |||
| -q   + q   - q   + 2 q  - q  + 3 q  + 2 q   + q   - q   + q   - 2 q   -  | -q   + q   - q   + 2 q  - q  + 3 q  + 2 q   + q   - q   + q   - 2 q   -  | ||
|    20 |    20 | ||
|   q</nowiki></pre></td></tr> |   q</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 151]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                        2      2         4      4    6 | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                        2      2         4      4    6 | |||
|       -6   3       2   z    6 z     4   z    4 z    z |       -6   3       2   z    6 z     4   z    4 z    z | ||
| -1 - a   + -- - 2 z  - -- + ---- - z  - -- + ---- + -- | -1 - a   + -- - 2 z  - -- + ---- - z  - -- + ---- + -- | ||
|             2           4     2          4     2     2 |             2           4     2          4     2     2 | ||
|            a           a     a          a     a     a</nowiki></pre></td></tr> |            a           a     a          a     a     a</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 151]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                                       2      2 | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                                       2      2 | |||
|       -6   3    3 z   3 z   z    2 z            2   2 z    4 z |       -6   3    3 z   3 z   z    2 z            2   2 z    4 z | ||
| -1 + a   - -- - --- - --- + -- + --- + a z + 4 z  - ---- + ---- +  | -1 + a   - -- - --- - --- + -- + --- + a z + 4 z  - ---- + ---- +  | ||
| Line 177: | Line 126: | ||
|     3     a      4    2 |     3     a      4    2 | ||
|    a            a    a</nowiki></pre></td></tr> |    a            a    a</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 151]], Vassiliev[3][Knot[10, 151]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 4}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 151]][q, t]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>         3     1       2      1      3    2 q      3        5 | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 151]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>         3     1       2      1      3    2 q      3        5 | |||
| 4 q + 4 q  + ----- + ----- + ---- + --- + --- + 4 q  t + 3 q  t +  | 4 q + 4 q  + ----- + ----- + ---- + --- + --- + 4 q  t + 3 q  t +  | ||
|               5  3    3  2      2   q t    t |               5  3    3  2      2   q t    t | ||
| Line 189: | Line 136: | ||
|      5  2      7  2      7  3      9  3      9  4      11  4      13  5 |      5  2      7  2      7  3      9  3      9  4      11  4      13  5 | ||
|   4 q  t  + 4 q  t  + 2 q  t  + 4 q  t  + 2 q  t  + 2 q   t  + 2 q   t</nowiki></pre></td></tr> |   4 q  t  + 4 q  t  + 2 q  t  + 4 q  t  + 2 q  t  + 2 q   t  + 2 q   t</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 151], 2][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -7   3    10   12   8    30              2       3       4 | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -7   3    10   12   8    30              2       3       4 | |||
| -17 + q   - -- + -- - -- - -- + -- - 27 q + 49 q  - 12 q  - 46 q  +  | -17 + q   - -- + -- - -- - -- + -- - 27 q + 49 q  - 12 q  - 46 q  +  | ||
|              6    4    3    2   q |              6    4    3    2   q | ||
| Line 201: | Line 147: | ||
|       13       14      15      16    17    18 |       13       14      15      16    17    18 | ||
|   26 q   + 10 q   + 6 q   - 7 q   + q   + q</nowiki></pre></td></tr> |   26 q   + 10 q   + 6 q   - 7 q   + q   + q</nowiki></pre></td></tr> | ||
|          </table>  }} | |||
| </table> | |||
| {| width=100% | |||
| |align=left|See/edit the [[Rolfsen_Splice_Template]]. | |||
| Back to the [[#top|top]]. | |||
| |align=right|{{Knot Navigation Links|ext=gif}} | |||
| |} | |||
|  [[Category:Knot Page]] | |||
Revision as of 10:39, 30 August 2005
|  |  | 
|  (KnotPlot image) | See the full Rolfsen Knot Table. Visit 10 151's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) | 
Knot presentations
| Planar diagram presentation | X1425 X3849 X12,6,13,5 X9,17,10,16 X17,1,18,20 X13,19,14,18 X19,15,20,14 X15,11,16,10 X6,12,7,11 X7283 | 
| Gauss code | -1, 10, -2, 1, 3, -9, -10, 2, -4, 8, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5 | 
| Dowker-Thistlethwaite code | 4 8 -12 2 16 -6 18 10 20 14 | 
| Conway Notation | [(21,2)(21,2-)] | 
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
| 
 Length is 11, width is 4, Braid index is 4 |   |  [{11, 5}, {1, 9}, {8, 10}, {9, 11}, {7, 4}, {5, 8}, {10, 13}, {6, 12}, {13, 7}, {12, 3}, {4, 2}, {3, 1}, {2, 6}] | 
[edit Notes on presentations of 10 151]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["10 151"]; | 
| In[4]:= | PD[K] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | X1425 X3849 X12,6,13,5 X9,17,10,16 X17,1,18,20 X13,19,14,18 X19,15,20,14 X15,11,16,10 X6,12,7,11 X7283 | 
| In[5]:= | GaussCode[K] | 
| Out[5]= | -1, 10, -2, 1, 3, -9, -10, 2, -4, 8, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5 | 
| In[6]:= | DTCode[K] | 
| Out[6]= | 4 8 -12 2 16 -6 18 10 20 14 | 
(The path below may be different on your system)
| In[7]:= | AppendTo[$Path, "C:/bin/LinKnot/"]; | 
| In[8]:= | ConwayNotation[K] | 
| Out[8]= | [(21,2)(21,2-)] | 
| In[9]:= | br = BR[K] | 
| KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051. | 
| Out[9]= | 
| In[10]:= | {First[br], Crossings[br], BraidIndex[K]} | 
| KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/. | 
| KnotTheory::loading: Loading precomputed data in IndianaData`. | 
| Out[10]= | { 4, 11, 4 } | 
| In[11]:= | Show[BraidPlot[br]] | 
| 
 | 
| Out[11]= | -Graphics- | 
| In[12]:= | Show[DrawMorseLink[K]] | 
| KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
| KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
|   | 
| Out[12]= | -Graphics- | 
| In[13]:= | ap = ArcPresentation[K] | 
| Out[13]= | ArcPresentation[{11, 5}, {1, 9}, {8, 10}, {9, 11}, {7, 4}, {5, 8}, {10, 13}, {6, 12}, {13, 7}, {12, 3}, {4, 2}, {3, 1}, {2, 6}] | 
| In[14]:= | Draw[ap] | 
|   | 
| Out[14]= | -Graphics- | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 151"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 43, 2 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n54, K11n129,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["10 151"]; | 
| In[4]:= | {A = Alexander[K][t], J = Jones[K][q]} | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[4]= | { , } | 
| In[5]:= | DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K] | 
| KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`. | 
| KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005. | 
| Out[5]= | {K11n54, K11n129,} | 
| In[6]:= | DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots11`. | 
| Out[6]= | {} | 
Vassiliev invariants
| V2 and V3: | (3, 4) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 151. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. | 
 | 







