Torus Knot Splice Base: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 10: Line 10:
|- valign=top
|- valign=top
|[[Image:{{PAGENAME}}.jpg]]
|[[Image:{{PAGENAME}}.jpg]]
|Visit [<*KnotilusURL[K]<>" "<>ThisKnot*>'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!
|Visit [<*KnotilusURL[K]*> {{PAGENAME}}'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!


Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/<*m*>.<*n*>.html <*ThisKnot*>'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/<*m*>.<*n*>.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!


{{:{{PAGENAME}} Quick Notes}}
{{:{{PAGENAME}} Quick Notes}}
Line 41: Line 41:
===[[Khovanov Homology]]===
===[[Khovanov Homology]]===


The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math><*s=KnotSignature[K]*> is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.


<center><*TabularKh[Kh[K][q, t], s+{1,-1}]*></center>
<center><*TabularKh[Kh[K][q, t], KnotSignature[K]+{1,-1}]*></center>


{{Computer Talk Header}}
{{Computer Talk Header}}

Revision as of 19:22, 27 August 2005


[[Image:Data:Torus Knot Splice Base/Previous Knot.jpg|80px|link=Data:Torus Knot Splice Base/Previous Knot]]

[[Data:Torus Knot Splice Base/Previous Knot]]

[[Image:Data:Torus Knot Splice Base/Next Knot.jpg|80px|link=Data:Torus Knot Splice Base/Next Knot]]

[[Data:Torus Knot Splice Base/Next Knot]]

File:Torus Knot Splice Base.jpg Visit [<*KnotilusURL[K]*> Torus Knot Splice Base's page] at Knotilus!

Visit <*m*>.<*n*>.html Torus Knot Splice Base's page at the original Knot Atlas!

Torus Knot Splice Base Quick Notes


Torus Knot Splice Base Further Notes and Views

Knot presentations

Planar diagram presentation Data:Torus Knot Splice Base/PD Presentation
Gauss code Data:Torus Knot Splice Base/Gauss Code
Dowker-Thistlethwaite code Data:Torus Knot Splice Base/DT Code
Conway Notation Data:Torus Knot Splice Base/Conway Notation

Knot presentations

Planar diagram presentation <*PD[K]*>
Gauss code <*List @@ GaussCode[K]*>
Dowker-Thistlethwaite code <*StringReplace[StringTake[ToString[DTCode[K]], {8, -2}], ","->""]*>

Polynomial invariants

Alexander polynomial Data:Torus Knot Splice Base/Alexander Polynomial
Conway polynomial Data:Torus Knot Splice Base/Conway Polynomial
2nd Alexander ideal (db, data sources) Data:Torus Knot Splice Base/2nd AlexanderIdeal
Determinant and Signature { Data:Torus Knot Splice Base/Determinant, Data:Torus Knot Splice Base/Signature }
Jones polynomial Data:Torus Knot Splice Base/Jones Polynomial
HOMFLY-PT polynomial (db, data sources) Data:Torus Knot Splice Base/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:Torus Knot Splice Base/Kauffman Polynomial
The A2 invariant Data:Torus Knot Splice Base/QuantumInvariant/A2/1,0
The G2 invariant Data:Torus Knot Splice Base/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (Data:Torus Knot Splice Base/V 2, Data:Torus Knot Splice Base/V 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:Torus Knot Splice Base/V 2,1 Data:Torus Knot Splice Base/V 3,1 Data:Torus Knot Splice Base/V 4,1 Data:Torus Knot Splice Base/V 4,2 Data:Torus Knot Splice Base/V 4,3 Data:Torus Knot Splice Base/V 5,1 Data:Torus Knot Splice Base/V 5,2 Data:Torus Knot Splice Base/V 5,3 Data:Torus Knot Splice Base/V 5,4 Data:Torus Knot Splice Base/V 6,1 Data:Torus Knot Splice Base/V 6,2 Data:Torus Knot Splice Base/V 6,3 Data:Torus Knot Splice Base/V 6,4 Data:Torus Knot Splice Base/V 6,5 Data:Torus Knot Splice Base/V 6,6 Data:Torus Knot Splice Base/V 6,7 Data:Torus Knot Splice Base/V 6,8 Data:Torus Knot Splice Base/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Torus Knot Splice Base/Signature is the signature of Torus Knot Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

<*TabularKh[Kh[K][q, t], KnotSignature[K]+{1,-1}]*>

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

<*InOut["Crossings[``]", K]*> <*InOut["PD[``]", K]*> <*InOut["GaussCode[``]", K]*> <*InOut["BR[``]", K]*> <*InOut["alex = Alexander[``][t]", K]*> <*InOut["Conway[``][z]", K]*> <*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> <*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> <*InOut["J=Jones[``][q]", K]*> <*InOut[

 "Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"

]*> <* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> <*InOut["A2Invariant[``][q]", K]*> <*InOut["Kauffman[``][a, z]", K]*> <*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> <*InOut["Kh[``][q, t]", K]*>

In[1]:=    
<< KnotTheory`
<*InOut[1]; KnotTheoryWelcomeMessage[]*>