4 1: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=4_1}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=4|k=1|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-3,4,-2/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=22.2222%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=11.1111%>-2</td ><td width=11.1111%>-1</td ><td width=11.1111%>0</td ><td width=11.1111%>1</td ><td width=11.1111%>2</td ><td width=22.2222%>χ</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[4, 1]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[4, 1]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 6, 1, 5], X[6, 3, 7, 4], X[2, 7, 3, 8]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[4, 1]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 2, -3, 4, -2]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[4, 1]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, 2, -1, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[4, 1]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 |
|||
3 - - - t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[4, 1]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
1 - z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[4, 1]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[4, 1]], KnotSignature[Knot[4, 1]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[4, 1]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 1 2 |
|||
1 + q - - - q + q |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[4, 1], Knot[11, NonAlternating, 19]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[4, 1]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 -6 6 8 |
|||
-1 + q + q + q + q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[4, 1]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 |
|||
-2 2 z 2 z 2 2 z 3 |
|||
-1 - a - a - - - a z + 2 z + -- + a z + -- + a z |
|||
a 2 a |
|||
a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[4, 1]], Vassiliev[3][Knot[4, 1]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[4, 1]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1 1 1 5 2 |
|||
- + q + ----- + --- + q t + q t |
|||
q 5 2 q t |
|||
q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 20:28, 27 August 2005
|
|
|
|
Visit 4 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 4 1's page at Knotilus! Visit 4 1's page at the original Knot Atlas! |
4_1 is also known as "the Figure Eight knot", as some people think it looks
like a figure `8' in one of its common projections. See e.g. [1] . For two 4_1 knots along a closed loop, see 10_59, 10_60, K12a975, and K12a991. |
A Neli-Kolam with 3x2 dot array[1] |
|||
Thurston's Trick [2] |
Non-prime (compound) versions
Knot presentations
| Planar diagram presentation | X4251 X8615 X6374 X2738 |
| Gauss code | 1, -4, 3, -1, 2, -3, 4, -2 |
| Dowker-Thistlethwaite code | 4 6 8 2 |
| Conway Notation | [22] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t- t^{-1} +3 }[/math] |
| Conway polynomial | [math]\displaystyle{ 1-z^2 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 5, 0 } |
| Jones polynomial | [math]\displaystyle{ q^2+ q^{-2} -q- q^{-1} +1 }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ a^2+ a^{-2} -z^2-1 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^2 z^2+z^2 a^{-2} -a^2- a^{-2} +a z^3+z^3 a^{-1} -a z-z a^{-1} +2 z^2-1 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^8+q^6-1+ q^{-6} + q^{-8} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{38}+q^{34}-q^{30}+q^{28}+q^{26}+q^{24}+q^{18}+q^{16}-q^{10}-q^4-1- q^{-4} - q^{-10} + q^{-16} + q^{-18} + q^{-24} + q^{-26} + q^{-28} - q^{-30} + q^{-34} + q^{-38} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ q^5+ q^{-5} }[/math] |
| 2 | [math]\displaystyle{ q^{14}-q^{10}+q^2+1+ q^{-2} - q^{-10} + q^{-14} }[/math] |
| 3 | [math]\displaystyle{ q^{27}-q^{23}-q^{21}+q^{17}+q^{11}+q^9+ q^{-9} + q^{-11} + q^{-17} - q^{-21} - q^{-23} + q^{-27} }[/math] |
| 4 | [math]\displaystyle{ q^{44}-q^{40}-q^{38}-q^{36}+q^{34}+q^{32}+q^{30}-q^{26}+q^{24}+q^{22}-q^{18}-q^{16}+q^4+q^2+1+ q^{-2} + q^{-4} - q^{-16} - q^{-18} + q^{-22} + q^{-24} - q^{-26} + q^{-30} + q^{-32} + q^{-34} - q^{-36} - q^{-38} - q^{-40} + q^{-44} }[/math] |
| 5 | [math]\displaystyle{ q^{65}-q^{61}-q^{59}-q^{57}+q^{53}+2 q^{51}+q^{49}-q^{45}-q^{43}+q^{39}+q^{37}-q^{35}-2 q^{33}-q^{31}+q^{27}+q^{25}+q^{17}+q^{15}+q^{13}+ q^{-13} + q^{-15} + q^{-17} + q^{-25} + q^{-27} - q^{-31} -2 q^{-33} - q^{-35} + q^{-37} + q^{-39} - q^{-43} - q^{-45} + q^{-49} +2 q^{-51} + q^{-53} - q^{-57} - q^{-59} - q^{-61} + q^{-65} }[/math] |
| 6 | [math]\displaystyle{ q^{90}-q^{86}-q^{84}-q^{82}+2 q^{76}+2 q^{74}+q^{72}-q^{68}-2 q^{66}-2 q^{64}+q^{62}+q^{60}+q^{58}-q^{54}-2 q^{52}-2 q^{50}+q^{48}+2 q^{46}+2 q^{44}+q^{42}-q^{38}-q^{36}+q^{34}+q^{32}+q^{30}-q^{26}-q^{24}-q^{22}+q^6+q^4+q^2+1+ q^{-2} + q^{-4} + q^{-6} - q^{-22} - q^{-24} - q^{-26} + q^{-30} + q^{-32} + q^{-34} - q^{-36} - q^{-38} + q^{-42} +2 q^{-44} +2 q^{-46} + q^{-48} -2 q^{-50} -2 q^{-52} - q^{-54} + q^{-58} + q^{-60} + q^{-62} -2 q^{-64} -2 q^{-66} - q^{-68} + q^{-72} +2 q^{-74} +2 q^{-76} - q^{-82} - q^{-84} - q^{-86} + q^{-90} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^8+q^6-1+ q^{-6} + q^{-8} }[/math] |
| 1,1 | [math]\displaystyle{ q^{20}+2 q^{16}-2 q^{10}-2 q^8+4 q^2+2+4 q^{-2} -2 q^{-8} -2 q^{-10} +2 q^{-16} + q^{-20} }[/math] |
| 2,0 | [math]\displaystyle{ q^{20}+q^{18}+q^{16}-q^{14}-q^{12}-q^{10}-q^8+q^4+2 q^2+2+2 q^{-2} + q^{-4} - q^{-8} - q^{-10} - q^{-12} - q^{-14} + q^{-16} + q^{-18} + q^{-20} }[/math] |
| 3,0 | [math]\displaystyle{ q^{36}+q^{34}+q^{32}-2 q^{28}-2 q^{26}-2 q^{24}+q^{18}+2 q^{16}+3 q^{14}+3 q^{12}+2 q^{10}+q^8-q^4-2 q^2-2-2 q^{-2} - q^{-4} + q^{-8} +2 q^{-10} +3 q^{-12} +3 q^{-14} +2 q^{-16} + q^{-18} -2 q^{-24} -2 q^{-26} -2 q^{-28} + q^{-32} + q^{-34} + q^{-36} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{16}+q^{12}+q^{10}+ q^{-10} + q^{-12} + q^{-16} }[/math] |
| 1,0,0 | [math]\displaystyle{ q^{11}+q^9+q^7-q- q^{-1} + q^{-7} + q^{-9} + q^{-11} }[/math] |
| 1,0,1 | [math]\displaystyle{ q^{26}+2 q^{22}+2 q^{20}+q^{18}+2 q^{16}-2 q^{14}-2 q^{12}-4 q^{10}-4 q^8+2 q^4+6 q^2+7+6 q^{-2} +2 q^{-4} -4 q^{-8} -4 q^{-10} -2 q^{-12} -2 q^{-14} +2 q^{-16} + q^{-18} +2 q^{-20} +2 q^{-22} + q^{-26} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{22}+q^{20}+q^{18}+q^{16}+q^{14}-q^{10}-q^8+q^2+2+ q^{-2} - q^{-8} - q^{-10} + q^{-14} + q^{-16} + q^{-18} + q^{-20} + q^{-22} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ q^{14}+q^{12}+q^{10}+q^8-q^2-1- q^{-2} + q^{-8} + q^{-10} + q^{-12} + q^{-14} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ q^{16}+q^{12}+q^{10}-2+ q^{-10} + q^{-12} + q^{-16} }[/math] |
| 1,0 | [math]\displaystyle{ q^{26}+q^{18}+1+ q^{-18} + q^{-26} }[/math] |
B3 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0 | [math]\displaystyle{ q^{38}+q^{30}+q^{26}+q^{22}-q^2+1- q^{-2} + q^{-22} + q^{-26} + q^{-30} + q^{-38} }[/math] |
B4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{50}+q^{42}+q^{38}+q^{34}+q^{30}+q^{26}-q^6-q^2+1- q^{-2} - q^{-6} + q^{-26} + q^{-30} + q^{-34} + q^{-38} + q^{-42} + q^{-50} }[/math] |
C3 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0 | [math]\displaystyle{ q^{22}+q^{18}+q^{16}+q^{14}+q^{12}-q^2-2- q^{-2} + q^{-12} + q^{-14} + q^{-16} + q^{-18} + q^{-22} }[/math] |
C4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{28}+q^{24}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}-q^4-q^2-2- q^{-2} - q^{-4} + q^{-14} + q^{-16} + q^{-18} + q^{-20} + q^{-22} + q^{-24} + q^{-28} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{38}+q^{34}+3 q^{32}+2 q^{30}+q^{28}+4 q^{26}+q^{24}-2 q^{18}-5 q^{16}-3 q^{14}-3 q^{12}-4 q^{10}+3 q^6+5 q^4+6 q^2+8+6 q^{-2} +5 q^{-4} +3 q^{-6} -4 q^{-10} -3 q^{-12} -3 q^{-14} -5 q^{-16} -2 q^{-18} + q^{-24} +4 q^{-26} + q^{-28} +2 q^{-30} +3 q^{-32} + q^{-34} + q^{-38} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ q^{22}+q^{18}+q^{16}+q^{14}+q^{12}-q^2- q^{-2} + q^{-12} + q^{-14} + q^{-16} + q^{-18} + q^{-22} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{38}+q^{34}-q^{30}+q^{28}+q^{26}+q^{24}+q^{18}+q^{16}-q^{10}-q^4-1- q^{-4} - q^{-10} + q^{-16} + q^{-18} + q^{-24} + q^{-26} + q^{-28} - q^{-30} + q^{-34} + q^{-38} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["4 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t- t^{-1} +3 }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 1-z^2 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^2+ q^{-2} -q- q^{-1} +1 }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ a^2+ a^{-2} -z^2-1 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^2 z^2+z^2 a^{-2} -a^2- a^{-2} +a z^3+z^3 a^{-1} -a z-z a^{-1} +2 z^2-1 }[/math] |
Vassiliev invariants
| V2 and V3: | (-1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 4 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-2 | -1 | 0 | 1 | 2 | χ | |||||||||
| 5 | 1 | 1 | |||||||||||||
| 3 | 0 | ||||||||||||||
| 1 | 1 | 1 | 0 | ||||||||||||
| -1 | 1 | 1 | 0 | ||||||||||||
| -3 | 0 | ||||||||||||||
| -5 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[4, 1]] |
Out[2]= | 4 |
In[3]:= | PD[Knot[4, 1]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 6, 1, 5], X[6, 3, 7, 4], X[2, 7, 3, 8]] |
In[4]:= | GaussCode[Knot[4, 1]] |
Out[4]= | GaussCode[1, -4, 3, -1, 2, -3, 4, -2] |
In[5]:= | BR[Knot[4, 1]] |
Out[5]= | BR[3, {-1, 2, -1, 2}] |
In[6]:= | alex = Alexander[Knot[4, 1]][t] |
Out[6]= | 1 |
In[7]:= | Conway[Knot[4, 1]][z] |
Out[7]= | 2 1 - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[4, 1]} |
In[9]:= | {KnotDet[Knot[4, 1]], KnotSignature[Knot[4, 1]]} |
Out[9]= | {5, 0} |
In[10]:= | J=Jones[Knot[4, 1]][q] |
Out[10]= | -2 1 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[4, 1], Knot[11, NonAlternating, 19]} |
In[12]:= | A2Invariant[Knot[4, 1]][q] |
Out[12]= | -8 -6 6 8 -1 + q + q + q + q |
In[13]:= | Kauffman[Knot[4, 1]][a, z] |
Out[13]= | 2 3-2 2 z 2 z 2 2 z 3 |
In[14]:= | {Vassiliev[2][Knot[4, 1]], Vassiliev[3][Knot[4, 1]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[4, 1]][q, t] |
Out[15]= | 1 1 1 5 2 |















