10 84: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
Line 41: | Line 44: | ||
coloured_jones_3 = <math>-q^{45}+4 q^{44}-3 q^{43}-7 q^{42}+4 q^{41}+22 q^{40}-4 q^{39}-58 q^{38}+109 q^{36}+38 q^{35}-181 q^{34}-121 q^{33}+259 q^{32}+250 q^{31}-308 q^{30}-433 q^{29}+319 q^{28}+638 q^{27}-271 q^{26}-852 q^{25}+186 q^{24}+1027 q^{23}-51 q^{22}-1172 q^{21}-88 q^{20}+1256 q^{19}+232 q^{18}-1284 q^{17}-371 q^{16}+1262 q^{15}+478 q^{14}-1162 q^{13}-587 q^{12}+1036 q^{11}+632 q^{10}-834 q^9-663 q^8+637 q^7+612 q^6-408 q^5-547 q^4+245 q^3+413 q^2-99 q-296+29 q^{-1} +181 q^{-2} +5 q^{-3} -99 q^{-4} -10 q^{-5} +48 q^{-6} +6 q^{-7} -22 q^{-8} -2 q^{-9} +11 q^{-10} -2 q^{-11} -3 q^{-12} - q^{-13} +3 q^{-14} - q^{-15} </math> | |
coloured_jones_3 = <math>-q^{45}+4 q^{44}-3 q^{43}-7 q^{42}+4 q^{41}+22 q^{40}-4 q^{39}-58 q^{38}+109 q^{36}+38 q^{35}-181 q^{34}-121 q^{33}+259 q^{32}+250 q^{31}-308 q^{30}-433 q^{29}+319 q^{28}+638 q^{27}-271 q^{26}-852 q^{25}+186 q^{24}+1027 q^{23}-51 q^{22}-1172 q^{21}-88 q^{20}+1256 q^{19}+232 q^{18}-1284 q^{17}-371 q^{16}+1262 q^{15}+478 q^{14}-1162 q^{13}-587 q^{12}+1036 q^{11}+632 q^{10}-834 q^9-663 q^8+637 q^7+612 q^6-408 q^5-547 q^4+245 q^3+413 q^2-99 q-296+29 q^{-1} +181 q^{-2} +5 q^{-3} -99 q^{-4} -10 q^{-5} +48 q^{-6} +6 q^{-7} -22 q^{-8} -2 q^{-9} +11 q^{-10} -2 q^{-11} -3 q^{-12} - q^{-13} +3 q^{-14} - q^{-15} </math> | |
||
coloured_jones_4 = <math>q^{74}-4 q^{73}+3 q^{72}+7 q^{71}-9 q^{70}+q^{69}-21 q^{68}+24 q^{67}+51 q^{66}-40 q^{65}-26 q^{64}-128 q^{63}+74 q^{62}+268 q^{61}+12 q^{60}-96 q^{59}-583 q^{58}-76 q^{57}+735 q^{56}+551 q^{55}+201 q^{54}-1526 q^{53}-1066 q^{52}+900 q^{51}+1767 q^{50}+1718 q^{49}-2242 q^{48}-3108 q^{47}-298 q^{46}+2830 q^{45}+4658 q^{44}-1568 q^{43}-5232 q^{42}-3055 q^{41}+2573 q^{40}+7892 q^{39}+653 q^{38}-6187 q^{37}-6244 q^{36}+891 q^{35}+10090 q^{34}+3372 q^{33}-5742 q^{32}-8620 q^{31}-1335 q^{30}+10812 q^{29}+5586 q^{28}-4417 q^{27}-9766 q^{26}-3391 q^{25}+10227 q^{24}+6994 q^{23}-2557 q^{22}-9678 q^{21}-5100 q^{20}+8380 q^{19}+7496 q^{18}-244 q^{17}-8221 q^{16}-6212 q^{15}+5381 q^{14}+6723 q^{13}+1978 q^{12}-5438 q^{11}-6065 q^{10}+2073 q^9+4578 q^8+3053 q^7-2287 q^6-4415 q^5-136 q^4+1994 q^3+2521 q^2-196 q-2200-674 q^{-1} +304 q^{-2} +1257 q^{-3} +383 q^{-4} -691 q^{-5} -328 q^{-6} -178 q^{-7} +370 q^{-8} +220 q^{-9} -140 q^{-10} -37 q^{-11} -112 q^{-12} +67 q^{-13} +51 q^{-14} -36 q^{-15} +21 q^{-16} -26 q^{-17} +12 q^{-18} +6 q^{-19} -14 q^{-20} +8 q^{-21} -3 q^{-22} +3 q^{-23} + q^{-24} -3 q^{-25} + q^{-26} </math> | |
coloured_jones_4 = <math>q^{74}-4 q^{73}+3 q^{72}+7 q^{71}-9 q^{70}+q^{69}-21 q^{68}+24 q^{67}+51 q^{66}-40 q^{65}-26 q^{64}-128 q^{63}+74 q^{62}+268 q^{61}+12 q^{60}-96 q^{59}-583 q^{58}-76 q^{57}+735 q^{56}+551 q^{55}+201 q^{54}-1526 q^{53}-1066 q^{52}+900 q^{51}+1767 q^{50}+1718 q^{49}-2242 q^{48}-3108 q^{47}-298 q^{46}+2830 q^{45}+4658 q^{44}-1568 q^{43}-5232 q^{42}-3055 q^{41}+2573 q^{40}+7892 q^{39}+653 q^{38}-6187 q^{37}-6244 q^{36}+891 q^{35}+10090 q^{34}+3372 q^{33}-5742 q^{32}-8620 q^{31}-1335 q^{30}+10812 q^{29}+5586 q^{28}-4417 q^{27}-9766 q^{26}-3391 q^{25}+10227 q^{24}+6994 q^{23}-2557 q^{22}-9678 q^{21}-5100 q^{20}+8380 q^{19}+7496 q^{18}-244 q^{17}-8221 q^{16}-6212 q^{15}+5381 q^{14}+6723 q^{13}+1978 q^{12}-5438 q^{11}-6065 q^{10}+2073 q^9+4578 q^8+3053 q^7-2287 q^6-4415 q^5-136 q^4+1994 q^3+2521 q^2-196 q-2200-674 q^{-1} +304 q^{-2} +1257 q^{-3} +383 q^{-4} -691 q^{-5} -328 q^{-6} -178 q^{-7} +370 q^{-8} +220 q^{-9} -140 q^{-10} -37 q^{-11} -112 q^{-12} +67 q^{-13} +51 q^{-14} -36 q^{-15} +21 q^{-16} -26 q^{-17} +12 q^{-18} +6 q^{-19} -14 q^{-20} +8 q^{-21} -3 q^{-22} +3 q^{-23} + q^{-24} -3 q^{-25} + q^{-26} </math> | |
||
coloured_jones_5 = | |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_6 = | |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_7 = | |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 50: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 84]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 84]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[8, 12, 9, 11], X[20, 15, 1, 16], |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[8, 12, 9, 11], X[20, 15, 1, 16], |
||
Line 70: | Line 73: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 84]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_84_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 84]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_84_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 84]]&) /@ { |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 84]]&) /@ { |
||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 84]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 84]][t]</nowiki></pre></td></tr> |
Revision as of 18:54, 31 August 2005
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 84's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,4,11,3 X8,12,9,11 X20,15,1,16 X16,5,17,6 X12,18,13,17 X14,8,15,7 X18,14,19,13 X6,19,7,20 X2,10,3,9 |
Gauss code | 1, -10, 2, -1, 5, -9, 7, -3, 10, -2, 3, -6, 8, -7, 4, -5, 6, -8, 9, -4 |
Dowker-Thistlethwaite code | 4 10 16 14 2 8 18 20 12 6 |
Conway Notation | [.22.2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
![]() |
![]() [{3, 11}, {2, 4}, {1, 3}, {7, 2}, {9, 12}, {10, 8}, {6, 9}, {11, 7}, {5, 10}, {4, 6}, {12, 5}, {8, 1}] |
[edit Notes on presentations of 10 84]
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a46, K11n184,}
Same Jones Polynomial (up to mirroring, ): {}
Vassiliev invariants
V2 and V3: | (2, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 84. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|