5 1: Difference between revisions
No edit summary |
No edit summary |
||
Line 48: | Line 48: | ||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
</table> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 2 | |
n = 2 | |
||
in = <nowiki>PD[Knot[5, 1]]</nowiki> | |
in = <nowiki>PD[Knot[5, 1]]</nowiki> | |
||
out = <nowiki>PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 10, 6, 1], X[7, 2, 8, 3], |
out = <nowiki>PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 10, 6, 1], X[7, 2, 8, 3], |
||
X[9, 4, 10, 5]]</nowiki> }}</nowiki> |
X[9, 4, 10, 5]]</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 3 | |
n = 3 | |
||
in = <nowiki>GaussCode[Knot[5, 1]]</nowiki> | |
in = <nowiki>GaussCode[Knot[5, 1]]</nowiki> | |
||
out = <nowiki>GaussCode[-1, 4, -2, 5, -3, 1, -4, 2, -5, 3]</nowiki> }}</nowiki> |
out = <nowiki>GaussCode[-1, 4, -2, 5, -3, 1, -4, 2, -5, 3]</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 4 | |
n = 4 | |
||
in = <nowiki>DTCode[Knot[5, 1]]</nowiki> | |
in = <nowiki>DTCode[Knot[5, 1]]</nowiki> | |
||
out = <nowiki>DTCode[6, 8, 10, 2, 4]</nowiki> }}</nowiki> |
out = <nowiki>DTCode[6, 8, 10, 2, 4]</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 5 | |
n = 5 | |
||
in = <nowiki>br = BR[Knot[5, 1]]</nowiki> | |
in = <nowiki>br = BR[Knot[5, 1]]</nowiki> | |
||
out = <nowiki>BR[2, {-1, -1, -1, -1, -1}]</nowiki> }}</nowiki> |
out = <nowiki>BR[2, {-1, -1, -1, -1, -1}]</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 6 | |
n = 6 | |
||
in = <nowiki>{First[br], Crossings[br]}</nowiki> | |
in = <nowiki>{First[br], Crossings[br]}</nowiki> | |
||
out = <nowiki>{2, 5}</nowiki> }}</nowiki> |
out = <nowiki>{2, 5}</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 7 | |
n = 7 | |
||
in = <nowiki>BraidIndex[Knot[5, 1]]</nowiki> | |
in = <nowiki>BraidIndex[Knot[5, 1]]</nowiki> | |
||
out = <nowiki>2</nowiki> }}</nowiki> |
out = <nowiki>2</nowiki> }}<nowiki></nowiki> |
||
<nowiki><tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[5, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:5_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr></nowiki> |
<nowiki></nowiki><tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[5, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:5_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr><nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 9 | |
n = 9 | |
||
in = <nowiki> (#[Knot[5, 1]]&) /@ { |
in = <nowiki> (#[Knot[5, 1]]&) /@ { |
||
Line 81: | Line 81: | ||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki> | |
}</nowiki> | |
||
out = <nowiki>{Reversible, 2, 2, 2, 3, 1}</nowiki> }}</nowiki> |
out = <nowiki>{Reversible, 2, 2, 2, 3, 1}</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 10 | |
n = 10 | |
||
in = <nowiki>alex = Alexander[Knot[5, 1]][t]</nowiki> | |
in = <nowiki>alex = Alexander[Knot[5, 1]][t]</nowiki> | |
||
out = <nowiki> -2 1 2 |
out = <nowiki> -2 1 2 |
||
1 + t - - - t + t |
1 + t - - - t + t |
||
t</nowiki> }}</nowiki> |
t</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 11 | |
n = 11 | |
||
in = <nowiki>Conway[Knot[5, 1]][z]</nowiki> | |
in = <nowiki>Conway[Knot[5, 1]][z]</nowiki> | |
||
out = <nowiki> 2 4 |
out = <nowiki> 2 4 |
||
1 + 3 z + z</nowiki> }}</nowiki> |
1 + 3 z + z</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 12 | |
n = 12 | |
||
in = <nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki> | |
in = <nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki> | |
||
out = <nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki> }}</nowiki> |
out = <nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 13 | |
n = 13 | |
||
in = <nowiki>{KnotDet[Knot[5, 1]], KnotSignature[Knot[5, 1]]}</nowiki> | |
in = <nowiki>{KnotDet[Knot[5, 1]], KnotSignature[Knot[5, 1]]}</nowiki> | |
||
out = <nowiki>{5, -4}</nowiki> }}</nowiki> |
out = <nowiki>{5, -4}</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 14 | |
n = 14 | |
||
in = <nowiki>Jones[Knot[5, 1]][q]</nowiki> | |
in = <nowiki>Jones[Knot[5, 1]][q]</nowiki> | |
||
out = <nowiki> -7 -6 -5 -4 -2 |
out = <nowiki> -7 -6 -5 -4 -2 |
||
-q + q - q + q + q</nowiki> }}</nowiki> |
-q + q - q + q + q</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 15 | |
n = 15 | |
||
in = <nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki> | |
in = <nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki> | |
||
out = <nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki> }}</nowiki> |
out = <nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 16 | |
n = 16 | |
||
in = <nowiki>A2Invariant[Knot[5, 1]][q]</nowiki> | |
in = <nowiki>A2Invariant[Knot[5, 1]][q]</nowiki> | |
||
Line 116: | Line 116: | ||
-q - q - q + q + q + --- + q + q |
-q - q - q + q + q + --- + q + q |
||
10 |
10 |
||
q</nowiki> }}</nowiki> |
q</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 17 | |
n = 17 | |
||
in = <nowiki>HOMFLYPT[Knot[5, 1]][a, z]</nowiki> | |
in = <nowiki>HOMFLYPT[Knot[5, 1]][a, z]</nowiki> | |
||
out = <nowiki> 4 6 4 2 6 2 4 4 |
out = <nowiki> 4 6 4 2 6 2 4 4 |
||
3 a - 2 a + 4 a z - a z + a z</nowiki> }}</nowiki> |
3 a - 2 a + 4 a z - a z + a z</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 18 | |
n = 18 | |
||
in = <nowiki>Kauffman[Knot[5, 1]][a, z]</nowiki> | |
in = <nowiki>Kauffman[Knot[5, 1]][a, z]</nowiki> | |
||
Line 129: | Line 129: | ||
5 3 7 3 4 4 6 4 |
5 3 7 3 4 4 6 4 |
||
a z + a z + a z + a z</nowiki> }}</nowiki> |
a z + a z + a z + a z</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 19 | |
n = 19 | |
||
in = <nowiki>{Vassiliev[2][Knot[5, 1]], Vassiliev[3][Knot[5, 1]]}</nowiki> | |
in = <nowiki>{Vassiliev[2][Knot[5, 1]], Vassiliev[3][Knot[5, 1]]}</nowiki> | |
||
out = <nowiki>{3, -5}</nowiki> }}</nowiki> |
out = <nowiki>{3, -5}</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 20 | |
n = 20 | |
||
in = <nowiki>Kh[Knot[5, 1]][q, t]</nowiki> | |
in = <nowiki>Kh[Knot[5, 1]][q, t]</nowiki> | |
||
Line 140: | Line 140: | ||
q + q + ------ + ------ + ------ + ----- |
q + q + ------ + ------ + ------ + ----- |
||
15 5 11 4 11 3 7 2 |
15 5 11 4 11 3 7 2 |
||
q t q t q t q t</nowiki> }}</nowiki> |
q t q t q t q t</nowiki> }}<nowiki></nowiki> |
||
<nowiki>{{InOut | |
<nowiki></nowiki>{{InOut | |
||
n = 21 | |
n = 21 | |
||
in = <nowiki>ColouredJones[Knot[5, 1], 2][q]</nowiki> | |
in = <nowiki>ColouredJones[Knot[5, 1], 2][q]</nowiki> | |
||
Line 147: | Line 147: | ||
q - q + q - --- + q - q + q - q + q + q |
q - q + q - --- + q - q + q - q + q + q |
||
15 |
15 |
||
q</nowiki> }}</nowiki> }} |
q</nowiki> }}<nowiki></nowiki> }} |
Revision as of 15:03, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 5 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]), as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2). When taken off the post the strangle knot (hitch) of practical knot tying deforms to 5_1 |
This sentence was last edited by Dror. Sometime later, Scott added this sentence.
Knot presentations
Planar diagram presentation | X1627 X3849 X5,10,6,1 X7283 X9,4,10,5 |
Gauss code | -1, 4, -2, 5, -3, 1, -4, 2, -5, 3 |
Dowker-Thistlethwaite code | 6 8 10 2 4 |
Conway Notation | [5] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||
Length is 5, width is 2, Braid index is 2 |
[{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}] |
[edit Notes on presentations of 5 1]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3849 X5,10,6,1 X7283 X9,4,10,5 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -2, 5, -3, 1, -4, 2, -5, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 10 2 4 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[5] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 2, 5, 2 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
8 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
B3 Invariants.
Weight | Invariant |
---|---|
1,0,0 |
B4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
C3 Invariants.
Weight | Invariant |
---|---|
1,0,0 |
C4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
D4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {[[10_132]], }
Same Jones Polynomial (up to mirroring, ): {[[10_132]], }
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{[[10_132]], } |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{[[10_132]], } |
Vassiliev invariants
V2 and V3: | (3, -5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 5 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|