5 1: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 48: Line 48:
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
</table>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 2 &#124;
n = 2 &#124;
in = <nowiki>PD[Knot[5, 1]]</nowiki> &#124;
in = <nowiki>PD[Knot[5, 1]]</nowiki> &#124;
out = <nowiki>PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 10, 6, 1], X[7, 2, 8, 3],
out = <nowiki>PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 10, 6, 1], X[7, 2, 8, 3],
X[9, 4, 10, 5]]</nowiki> }}</nowiki>
X[9, 4, 10, 5]]</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 3 &#124;
n = 3 &#124;
in = <nowiki>GaussCode[Knot[5, 1]]</nowiki> &#124;
in = <nowiki>GaussCode[Knot[5, 1]]</nowiki> &#124;
out = <nowiki>GaussCode[-1, 4, -2, 5, -3, 1, -4, 2, -5, 3]</nowiki> }}</nowiki>
out = <nowiki>GaussCode[-1, 4, -2, 5, -3, 1, -4, 2, -5, 3]</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 4 &#124;
n = 4 &#124;
in = <nowiki>DTCode[Knot[5, 1]]</nowiki> &#124;
in = <nowiki>DTCode[Knot[5, 1]]</nowiki> &#124;
out = <nowiki>DTCode[6, 8, 10, 2, 4]</nowiki> }}</nowiki>
out = <nowiki>DTCode[6, 8, 10, 2, 4]</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 5 &#124;
n = 5 &#124;
in = <nowiki>br = BR[Knot[5, 1]]</nowiki> &#124;
in = <nowiki>br = BR[Knot[5, 1]]</nowiki> &#124;
out = <nowiki>BR[2, {-1, -1, -1, -1, -1}]</nowiki> }}</nowiki>
out = <nowiki>BR[2, {-1, -1, -1, -1, -1}]</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 6 &#124;
n = 6 &#124;
in = <nowiki>{First[br], Crossings[br]}</nowiki> &#124;
in = <nowiki>{First[br], Crossings[br]}</nowiki> &#124;
out = <nowiki>{2, 5}</nowiki> }}</nowiki>
out = <nowiki>{2, 5}</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 7 &#124;
n = 7 &#124;
in = <nowiki>BraidIndex[Knot[5, 1]]</nowiki> &#124;
in = <nowiki>BraidIndex[Knot[5, 1]]</nowiki> &#124;
out = <nowiki>2</nowiki> }}</nowiki>
out = <nowiki>2</nowiki> }}<nowiki></nowiki>
<nowiki><tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[5, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:5_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr></nowiki>
<nowiki></nowiki><tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[5, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:5_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr><nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 9 &#124;
n = 9 &#124;
in = <nowiki> (#[Knot[5, 1]]&) /@ {
in = <nowiki> (#[Knot[5, 1]]&) /@ {
Line 81: Line 81:
BridgeIndex, SuperBridgeIndex, NakanishiIndex
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki> &#124;
}</nowiki> &#124;
out = <nowiki>{Reversible, 2, 2, 2, 3, 1}</nowiki> }}</nowiki>
out = <nowiki>{Reversible, 2, 2, 2, 3, 1}</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 10 &#124;
n = 10 &#124;
in = <nowiki>alex = Alexander[Knot[5, 1]][t]</nowiki> &#124;
in = <nowiki>alex = Alexander[Knot[5, 1]][t]</nowiki> &#124;
out = <nowiki> -2 1 2
out = <nowiki> -2 1 2
1 + t - - - t + t
1 + t - - - t + t
t</nowiki> }}</nowiki>
t</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 11 &#124;
n = 11 &#124;
in = <nowiki>Conway[Knot[5, 1]][z]</nowiki> &#124;
in = <nowiki>Conway[Knot[5, 1]][z]</nowiki> &#124;
out = <nowiki> 2 4
out = <nowiki> 2 4
1 + 3 z + z</nowiki> }}</nowiki>
1 + 3 z + z</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 12 &#124;
n = 12 &#124;
in = <nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki> &#124;
in = <nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki> &#124;
out = <nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki> }}</nowiki>
out = <nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 13 &#124;
n = 13 &#124;
in = <nowiki>{KnotDet[Knot[5, 1]], KnotSignature[Knot[5, 1]]}</nowiki> &#124;
in = <nowiki>{KnotDet[Knot[5, 1]], KnotSignature[Knot[5, 1]]}</nowiki> &#124;
out = <nowiki>{5, -4}</nowiki> }}</nowiki>
out = <nowiki>{5, -4}</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 14 &#124;
n = 14 &#124;
in = <nowiki>Jones[Knot[5, 1]][q]</nowiki> &#124;
in = <nowiki>Jones[Knot[5, 1]][q]</nowiki> &#124;
out = <nowiki> -7 -6 -5 -4 -2
out = <nowiki> -7 -6 -5 -4 -2
-q + q - q + q + q</nowiki> }}</nowiki>
-q + q - q + q + q</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 15 &#124;
n = 15 &#124;
in = <nowiki>Select[AllKnots[], (J === Jones[#][q] &#124;&#124; (J /. q-> 1/q) === Jones[#][q])&]</nowiki> &#124;
in = <nowiki>Select[AllKnots[], (J === Jones[#][q] &#124;&#124; (J /. q-> 1/q) === Jones[#][q])&]</nowiki> &#124;
out = <nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki> }}</nowiki>
out = <nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 16 &#124;
n = 16 &#124;
in = <nowiki>A2Invariant[Knot[5, 1]][q]</nowiki> &#124;
in = <nowiki>A2Invariant[Knot[5, 1]][q]</nowiki> &#124;
Line 116: Line 116:
-q - q - q + q + q + --- + q + q
-q - q - q + q + q + --- + q + q
10
10
q</nowiki> }}</nowiki>
q</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 17 &#124;
n = 17 &#124;
in = <nowiki>HOMFLYPT[Knot[5, 1]][a, z]</nowiki> &#124;
in = <nowiki>HOMFLYPT[Knot[5, 1]][a, z]</nowiki> &#124;
out = <nowiki> 4 6 4 2 6 2 4 4
out = <nowiki> 4 6 4 2 6 2 4 4
3 a - 2 a + 4 a z - a z + a z</nowiki> }}</nowiki>
3 a - 2 a + 4 a z - a z + a z</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 18 &#124;
n = 18 &#124;
in = <nowiki>Kauffman[Knot[5, 1]][a, z]</nowiki> &#124;
in = <nowiki>Kauffman[Knot[5, 1]][a, z]</nowiki> &#124;
Line 129: Line 129:
5 3 7 3 4 4 6 4
5 3 7 3 4 4 6 4
a z + a z + a z + a z</nowiki> }}</nowiki>
a z + a z + a z + a z</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 19 &#124;
n = 19 &#124;
in = <nowiki>{Vassiliev[2][Knot[5, 1]], Vassiliev[3][Knot[5, 1]]}</nowiki> &#124;
in = <nowiki>{Vassiliev[2][Knot[5, 1]], Vassiliev[3][Knot[5, 1]]}</nowiki> &#124;
out = <nowiki>{3, -5}</nowiki> }}</nowiki>
out = <nowiki>{3, -5}</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 20 &#124;
n = 20 &#124;
in = <nowiki>Kh[Knot[5, 1]][q, t]</nowiki> &#124;
in = <nowiki>Kh[Knot[5, 1]][q, t]</nowiki> &#124;
Line 140: Line 140:
q + q + ------ + ------ + ------ + -----
q + q + ------ + ------ + ------ + -----
15 5 11 4 11 3 7 2
15 5 11 4 11 3 7 2
q t q t q t q t</nowiki> }}</nowiki>
q t q t q t q t</nowiki> }}<nowiki></nowiki>
<nowiki>{{InOut &#124;
<nowiki></nowiki>{{InOut &#124;
n = 21 &#124;
n = 21 &#124;
in = <nowiki>ColouredJones[Knot[5, 1], 2][q]</nowiki> &#124;
in = <nowiki>ColouredJones[Knot[5, 1], 2][q]</nowiki> &#124;
Line 147: Line 147:
q - q + q - --- + q - q + q - q + q + q
q - q + q - --- + q - q + q - q + q + q
15
15
q</nowiki> }}</nowiki> }}
q</nowiki> }}<nowiki></nowiki> }}

Revision as of 15:03, 1 September 2005

4 1.gif

4_1

5 2.gif

5_2

5 1.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 5 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 5 1 at Knotilus!

An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]), as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2).

When taken off the post the strangle knot (hitch) of practical knot tying deforms to 5_1


A kolam of a 2x3 dot array
The VISA Interlink Logo [1]
Version of the US bicentennial emblem
A pentagonal table by Bob Mackay [2]
The Utah State Parks logo
As impossible object ("Penrose" pentagram)
Folded ribbon which is single-sided (more complex version of Möbius Strip).
Non-pentagonal shape.
Pentagram of circles.
Alternate pentagram of intersecting circles.
3D-looking rendition.
Partial view of US bicentennial logo on a shirt seen in Lisboa [3]
Non-prime knot with two 5_1 configurations on a closed loop.
Knotted epitrochoid
Sum of two 5_1s, Vienna, orthodox church

This sentence was last edited by Dror. Sometime later, Scott added this sentence.

Knot presentations

Planar diagram presentation X1627 X3849 X5,10,6,1 X7283 X9,4,10,5
Gauss code -1, 4, -2, 5, -3, 1, -4, 2, -5, 3
Dowker-Thistlethwaite code 6 8 10 2 4
Conway Notation [5]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif

Length is 5, width is 2,

Braid index is 2

5 1 ML.gif 5 1 AP.gif
[{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}]

[edit Notes on presentations of 5 1]

Knot 5_1.
A graph, knot 5_1.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index 3
Nakanishi index 1
Maximal Thurston-Bennequin number [-10][3]
Hyperbolic Volume Not hyperbolic
A-Polynomial See Data:5 1/A-polynomial

[edit Notes for 5 1's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 5 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {[[10_132]], }

Same Jones Polynomial (up to mirroring, ): {[[10_132]], }

Vassiliev invariants

V2 and V3: (3, -5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 5 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10χ
-3     11
-5     11
-7   1  1
-9      0
-11 11   0
-13      0
-151     -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials