10 48: Difference between revisions
| DrorsRobot (talk | contribs) No edit summary | No edit summary | ||
| Line 1: | Line 1: | ||
| <!--                       WARNING! WARNING! WARNING! | <!--                       WARNING! WARNING! WARNING! | ||
| <!-- This page was generated from the splice  | <!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! | ||
| <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | ||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> | <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> | ||
| <!--  | <!--  --> | ||
| <!--  | <!--  --> | ||
| {{Rolfsen Knot Page| | {{Rolfsen Knot Page| | ||
| n = 10 | | n = 10 | | ||
| Line 52: | Line 52: | ||
|          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | ||
|          </tr> |          </tr> | ||
|          <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |          <tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> | ||
|          </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 48]]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[14, 6, 15, 5], X[20, 15, 1, 16],  | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 48]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[14, 6, 15, 5], X[20, 15, 1, 16],  | |||
|   X[16, 9, 17, 10], X[18, 11, 19, 12], X[10, 17, 11, 18],  |   X[16, 9, 17, 10], X[18, 11, 19, 12], X[10, 17, 11, 18],  | ||
|   X[12, 19, 13, 20], X[2, 8, 3, 7], X[4, 14, 5, 13]]</nowiki></ |   X[12, 19, 13, 20], X[2, 8, 3, 7], X[4, 14, 5, 13]]</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 48]]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -9, 2, -10, 3, -1, 9, -2, 5, -7, 6, -8, 10, -3, 4, -5, 7,  | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 48]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -9, 2, -10, 3, -1, 9, -2, 5, -7, 6, -8, 10, -3, 4, -5, 7,  | |||
|   -6, 8, -4]</nowiki></ |   -6, 8, -4]</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 48]]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 14, 2, 16, 18, 4, 20, 10, 12]</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 48]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> | |||
| < | <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> | ||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 14, 2, 16, 18, 4, 20, 10, 12]</nowiki></code></td></tr> | |||
| </table> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
|          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Knot[10, 48]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:10_48_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[8]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 48]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, 2, 2, -1, 2, 2, 2}]</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 48]]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 48]]]</nowiki></code></td></tr> | |||
| <tr align=left><td></td><td>[[Image:10_48_ML.gif]]</td></tr><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 48]]&) /@ { | |||
|                    SymmetryType, UnknottingNumber, ThreeGenus, |                    SymmetryType, UnknottingNumber, ThreeGenus, | ||
|                    BridgeIndex, SuperBridgeIndex, NakanishiIndex |                    BridgeIndex, SuperBridgeIndex, NakanishiIndex | ||
|                   }</nowiki></ |                   }</nowiki></code></td></tr> | ||
| <tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 4, 3, NotAvailable, 1}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 48]][t]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -4   3    6    9            2      3    4 | |||
| 11 + t   - -- + -- - - - 9 t + 6 t  - 3 t  + t | 11 + t   - -- + -- - - - 9 t + 6 t  - 3 t  + t | ||
|             3    2   t |             3    2   t | ||
|            t    t</nowiki></ |            t    t</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 48]][z]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      4      6    8 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> | |||
| 1 + 4 z  + 8 z  + 5 z  + z</nowiki></pre></td></tr> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 48]][z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 48]}</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>       2      4      6    8 | |||
| 1 + 4 z  + 8 z  + 5 z  + z</nowiki></code></td></tr> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 48]][q]</nowiki></pre></td></tr> | |||
| </table> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -5   2    4    6    7            2      3      4    5 | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 48]}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 48]], KnotSignature[Knot[10, 48]]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{49, 0}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 48]][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     -5   2    4    6    7            2      3      4    5 | |||
| 9 - q   + -- - -- + -- - - - 7 q + 6 q  - 4 q  + 2 q  - q | 9 - q   + -- - -- + -- - - - 7 q + 6 q  - 4 q  + 2 q  - q | ||
|            4    3    2   q |            4    3    2   q | ||
|           q    q    q</nowiki></ |           q    q    q</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 48]}</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 48]}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 48]][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     -14    2    4       2      10    14 | |||
| 1 - q    - --- + -- + 4 q  - 2 q   - q | 1 - q    - --- + -- + 4 q  - 2 q   - q | ||
|             10    2 |             10    2 | ||
|            q     q</nowiki></ |            q     q</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 48]][a, z]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                           2                        4 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 48]][a, z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>                           2                        4 | |||
|     4       2       2   8 z       2  2       4   5 z       2  4 |     4       2       2   8 z       2  2       4   5 z       2  4 | ||
| 9 - -- - 4 a  + 20 z  - ---- - 8 a  z  + 18 z  - ---- - 5 a  z  +  | 9 - -- - 4 a  + 20 z  - ---- - 8 a  z  + 18 z  - ---- - 5 a  z  +  | ||
| Line 112: | Line 193: | ||
|   7 z  - -- - a  z  + z |   7 z  - -- - a  z  + z | ||
|           2 |           2 | ||
|          a</nowiki></ |          a</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 48]][a, z]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                                           2       2 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 48]][a, z]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>                                                           2       2 | |||
|     4       2   z    3 z   9 z              5         2   z    13 z |     4       2   z    3 z   9 z              5         2   z    13 z | ||
| 9 + -- + 4 a  + -- - --- - --- - 7 a z + 2 a  z - 27 z  + -- - ----- -  | 9 + -- + 4 a  + -- - --- - --- - 7 a z + 2 a  z - 27 z  + -- - ----- -  | ||
| Line 142: | Line 228: | ||
|   2 a  z  + ---- + -- + 2 a  z  + 5 z  + ---- + 2 a  z  + -- + a z |   2 a  z  + ---- + -- + 2 a  z  + 5 z  + ---- + 2 a  z  + -- + a z | ||
|               3    a                       2              a |               3    a                       2              a | ||
|              a                            a</nowiki></ |              a                            a</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 48]], Vassiliev[3][Knot[10, 48]]}</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 0}</nowiki></pre></td></tr> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 48]], Vassiliev[3][Knot[10, 48]]}</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 0}</nowiki></code></td></tr> | |||
| </table> | |||
|          <table><tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 48]][q, t]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5           1        1       1       3       1       3       3 | |||
| - + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +  | - + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +  | ||
| q          11  5    9  4    7  4    7  3    5  3    5  2    3  2 | q          11  5    9  4    7  4    7  3    5  3    5  2    3  2 | ||
| Line 157: | Line 253: | ||
|    7  4    9  4    11  5 |    7  4    9  4    11  5 | ||
|   q  t  + q  t  + q   t</nowiki></ |   q  t  + q  t  + q   t</nowiki></code></td></tr> | ||
| </table> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 48], 2][q]</nowiki></pre></td></tr> | |||
|          <table><tr align=left> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -15    2     5     7     -10   14   16   5    30   25   15   47 | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> | |||
| <td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 48], 2][q]</nowiki></code></td></tr> | |||
| <tr align=left> | |||
| <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> | |||
| <td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -15    2     5     7     -10   14   16   5    30   25   15   47 | |||
| 56 + q    - --- + --- - --- - q    + -- - -- - -- + -- - -- - -- + -- -  | 56 + q    - --- + --- - --- - q    + -- - -- - -- + -- - -- - -- + -- -  | ||
|              14    12    11           9    8    7    6    5    4    3 |              14    12    11           9    8    7    6    5    4    3 | ||
| Line 170: | Line 271: | ||
|       8       9      10      11      12    13      14    15 |       8       9      10      11      12    13      14    15 | ||
|   19 q  + 14 q  + 2 q   - 9 q   + 4 q   + q   - 2 q   + q</nowiki></ |   19 q  + 14 q  + 2 q   - 9 q   + 4 q   + q   - 2 q   + q</nowiki></code></td></tr> | ||
| </table>  }} | |||
Latest revision as of 17:58, 1 September 2005
|  |  | 
|  (KnotPlot image) | See the full Rolfsen Knot Table. Visit 10 48's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) | 
Knot presentations
| Planar diagram presentation | X6271 X8493 X14,6,15,5 X20,15,1,16 X16,9,17,10 X18,11,19,12 X10,17,11,18 X12,19,13,20 X2837 X4,14,5,13 | 
| Gauss code | 1, -9, 2, -10, 3, -1, 9, -2, 5, -7, 6, -8, 10, -3, 4, -5, 7, -6, 8, -4 | 
| Dowker-Thistlethwaite code | 6 8 14 2 16 18 4 20 10 12 | 
| Conway Notation | [41,3,2] | 
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
| 
 Length is 10, width is 3, Braid index is 3 |   |  [{5, 13}, {2, 12}, {13, 11}, {12, 6}, {1, 4}, {3, 5}, {4, 7}, {6, 8}, {7, 9}, {8, 10}, {9, 3}, {11, 2}, {10, 1}] | 
[edit Notes on presentations of 10 48]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["10 48"]; | 
| In[4]:= | PD[K] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | X6271 X8493 X14,6,15,5 X20,15,1,16 X16,9,17,10 X18,11,19,12 X10,17,11,18 X12,19,13,20 X2837 X4,14,5,13 | 
| In[5]:= | GaussCode[K] | 
| Out[5]= | 1, -9, 2, -10, 3, -1, 9, -2, 5, -7, 6, -8, 10, -3, 4, -5, 7, -6, 8, -4 | 
| In[6]:= | DTCode[K] | 
| Out[6]= | 6 8 14 2 16 18 4 20 10 12 | 
(The path below may be different on your system)
| In[7]:= | AppendTo[$Path, "C:/bin/LinKnot/"]; | 
| In[8]:= | ConwayNotation[K] | 
| Out[8]= | [41,3,2] | 
| In[9]:= | br = BR[K] | 
| KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051. | 
| Out[9]= | 
| In[10]:= | {First[br], Crossings[br], BraidIndex[K]} | 
| KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/. | 
| KnotTheory::loading: Loading precomputed data in IndianaData`. | 
| Out[10]= | { 3, 10, 3 } | 
| In[11]:= | Show[BraidPlot[br]] | 
| 
 | 
| Out[11]= | -Graphics- | 
| In[12]:= | Show[DrawMorseLink[K]] | 
| KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
| KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005." | 
|   | 
| Out[12]= | -Graphics- | 
| In[13]:= | ap = ArcPresentation[K] | 
| Out[13]= | ArcPresentation[{5, 13}, {2, 12}, {13, 11}, {12, 6}, {1, 4}, {3, 5}, {4, 7}, {6, 8}, {7, 9}, {8, 10}, {9, 3}, {11, 2}, {10, 1}] | 
| In[14]:= | Draw[ap] | 
|   | 
| Out[14]= | -Graphics- | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 48"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 49, 0 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
 | 
| In[3]:= | K = Knot["10 48"]; | 
| In[4]:= | {A = Alexander[K][t], J = Jones[K][q]} | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[4]= | { , } | 
| In[5]:= | DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K] | 
| KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`. | 
| KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005. | 
| Out[5]= | {} | 
| In[6]:= | DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots11`. | 
| Out[6]= | {} | 
Vassiliev invariants
| V2 and V3: | (4, 0) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 48. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. | 
 | 







