9 37: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 9 | |
n = 9 | |
||
Line 45: | Line 45: | ||
coloured_jones_4 = <math>q^{40}-2 q^{39}+q^{38}+q^{37}-3 q^{36}+5 q^{35}-7 q^{34}+5 q^{33}+6 q^{32}-15 q^{31}+9 q^{30}-18 q^{29}+27 q^{28}+31 q^{27}-49 q^{26}-13 q^{25}-59 q^{24}+87 q^{23}+126 q^{22}-73 q^{21}-86 q^{20}-213 q^{19}+140 q^{18}+337 q^{17}+7 q^{16}-163 q^{15}-517 q^{14}+89 q^{13}+591 q^{12}+229 q^{11}-139 q^{10}-875 q^9-102 q^8+759 q^7+506 q^6+4 q^5-1137 q^4-336 q^3+780 q^2+705 q+197-1231 q^{-1} -511 q^{-2} +680 q^{-3} +774 q^{-4} +373 q^{-5} -1163 q^{-6} -603 q^{-7} +492 q^{-8} +734 q^{-9} +523 q^{-10} -959 q^{-11} -626 q^{-12} +241 q^{-13} +596 q^{-14} +626 q^{-15} -637 q^{-16} -564 q^{-17} -32 q^{-18} +366 q^{-19} +632 q^{-20} -282 q^{-21} -396 q^{-22} -210 q^{-23} +107 q^{-24} +494 q^{-25} -25 q^{-26} -169 q^{-27} -221 q^{-28} -68 q^{-29} +275 q^{-30} +61 q^{-31} -8 q^{-32} -123 q^{-33} -101 q^{-34} +102 q^{-35} +39 q^{-36} +35 q^{-37} -37 q^{-38} -57 q^{-39} +25 q^{-40} +8 q^{-41} +20 q^{-42} -4 q^{-43} -18 q^{-44} +4 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math> | |
coloured_jones_4 = <math>q^{40}-2 q^{39}+q^{38}+q^{37}-3 q^{36}+5 q^{35}-7 q^{34}+5 q^{33}+6 q^{32}-15 q^{31}+9 q^{30}-18 q^{29}+27 q^{28}+31 q^{27}-49 q^{26}-13 q^{25}-59 q^{24}+87 q^{23}+126 q^{22}-73 q^{21}-86 q^{20}-213 q^{19}+140 q^{18}+337 q^{17}+7 q^{16}-163 q^{15}-517 q^{14}+89 q^{13}+591 q^{12}+229 q^{11}-139 q^{10}-875 q^9-102 q^8+759 q^7+506 q^6+4 q^5-1137 q^4-336 q^3+780 q^2+705 q+197-1231 q^{-1} -511 q^{-2} +680 q^{-3} +774 q^{-4} +373 q^{-5} -1163 q^{-6} -603 q^{-7} +492 q^{-8} +734 q^{-9} +523 q^{-10} -959 q^{-11} -626 q^{-12} +241 q^{-13} +596 q^{-14} +626 q^{-15} -637 q^{-16} -564 q^{-17} -32 q^{-18} +366 q^{-19} +632 q^{-20} -282 q^{-21} -396 q^{-22} -210 q^{-23} +107 q^{-24} +494 q^{-25} -25 q^{-26} -169 q^{-27} -221 q^{-28} -68 q^{-29} +275 q^{-30} +61 q^{-31} -8 q^{-32} -123 q^{-33} -101 q^{-34} +102 q^{-35} +39 q^{-36} +35 q^{-37} -37 q^{-38} -57 q^{-39} +25 q^{-40} +8 q^{-41} +20 q^{-42} -4 q^{-43} -18 q^{-44} +4 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math> | |
||
coloured_jones_5 = <math>q^{60}-2 q^{59}+q^{58}+q^{57}-3 q^{56}+q^{55}+5 q^{54}-5 q^{53}+4 q^{51}-10 q^{50}-2 q^{49}+17 q^{48}+2 q^{47}+5 q^{46}-3 q^{45}-39 q^{44}-31 q^{43}+30 q^{42}+67 q^{41}+72 q^{40}+6 q^{39}-146 q^{38}-184 q^{37}-38 q^{36}+191 q^{35}+356 q^{34}+211 q^{33}-251 q^{32}-596 q^{31}-454 q^{30}+155 q^{29}+860 q^{28}+926 q^{27}+16 q^{26}-1104 q^{25}-1429 q^{24}-460 q^{23}+1226 q^{22}+2093 q^{21}+1032 q^{20}-1216 q^{19}-2660 q^{18}-1780 q^{17}+982 q^{16}+3185 q^{15}+2576 q^{14}-607 q^{13}-3544 q^{12}-3325 q^{11}+110 q^{10}+3701 q^9+4010 q^8+425 q^7-3755 q^6-4481 q^5-933 q^4+3609 q^3+4851 q^2+1391 q-3460-4996 q^{-1} -1752 q^{-2} +3163 q^{-3} +5081 q^{-4} +2059 q^{-5} -2903 q^{-6} -4986 q^{-7} -2302 q^{-8} +2518 q^{-9} +4858 q^{-10} +2522 q^{-11} -2125 q^{-12} -4596 q^{-13} -2701 q^{-14} +1618 q^{-15} +4241 q^{-16} +2861 q^{-17} -1051 q^{-18} -3791 q^{-19} -2940 q^{-20} +470 q^{-21} +3153 q^{-22} +2928 q^{-23} +182 q^{-24} -2507 q^{-25} -2764 q^{-26} -662 q^{-27} +1697 q^{-28} +2436 q^{-29} +1124 q^{-30} -1003 q^{-31} -1997 q^{-32} -1260 q^{-33} +304 q^{-34} +1440 q^{-35} +1314 q^{-36} +148 q^{-37} -909 q^{-38} -1096 q^{-39} -465 q^{-40} +425 q^{-41} +855 q^{-42} +538 q^{-43} -89 q^{-44} -531 q^{-45} -512 q^{-46} -112 q^{-47} +297 q^{-48} +378 q^{-49} +176 q^{-50} -101 q^{-51} -251 q^{-52} -177 q^{-53} +17 q^{-54} +141 q^{-55} +120 q^{-56} +28 q^{-57} -59 q^{-58} -84 q^{-59} -33 q^{-60} +29 q^{-61} +42 q^{-62} +18 q^{-63} -2 q^{-64} -18 q^{-65} -20 q^{-66} +4 q^{-67} +11 q^{-68} +3 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math> | |
coloured_jones_5 = <math>q^{60}-2 q^{59}+q^{58}+q^{57}-3 q^{56}+q^{55}+5 q^{54}-5 q^{53}+4 q^{51}-10 q^{50}-2 q^{49}+17 q^{48}+2 q^{47}+5 q^{46}-3 q^{45}-39 q^{44}-31 q^{43}+30 q^{42}+67 q^{41}+72 q^{40}+6 q^{39}-146 q^{38}-184 q^{37}-38 q^{36}+191 q^{35}+356 q^{34}+211 q^{33}-251 q^{32}-596 q^{31}-454 q^{30}+155 q^{29}+860 q^{28}+926 q^{27}+16 q^{26}-1104 q^{25}-1429 q^{24}-460 q^{23}+1226 q^{22}+2093 q^{21}+1032 q^{20}-1216 q^{19}-2660 q^{18}-1780 q^{17}+982 q^{16}+3185 q^{15}+2576 q^{14}-607 q^{13}-3544 q^{12}-3325 q^{11}+110 q^{10}+3701 q^9+4010 q^8+425 q^7-3755 q^6-4481 q^5-933 q^4+3609 q^3+4851 q^2+1391 q-3460-4996 q^{-1} -1752 q^{-2} +3163 q^{-3} +5081 q^{-4} +2059 q^{-5} -2903 q^{-6} -4986 q^{-7} -2302 q^{-8} +2518 q^{-9} +4858 q^{-10} +2522 q^{-11} -2125 q^{-12} -4596 q^{-13} -2701 q^{-14} +1618 q^{-15} +4241 q^{-16} +2861 q^{-17} -1051 q^{-18} -3791 q^{-19} -2940 q^{-20} +470 q^{-21} +3153 q^{-22} +2928 q^{-23} +182 q^{-24} -2507 q^{-25} -2764 q^{-26} -662 q^{-27} +1697 q^{-28} +2436 q^{-29} +1124 q^{-30} -1003 q^{-31} -1997 q^{-32} -1260 q^{-33} +304 q^{-34} +1440 q^{-35} +1314 q^{-36} +148 q^{-37} -909 q^{-38} -1096 q^{-39} -465 q^{-40} +425 q^{-41} +855 q^{-42} +538 q^{-43} -89 q^{-44} -531 q^{-45} -512 q^{-46} -112 q^{-47} +297 q^{-48} +378 q^{-49} +176 q^{-50} -101 q^{-51} -251 q^{-52} -177 q^{-53} +17 q^{-54} +141 q^{-55} +120 q^{-56} +28 q^{-57} -59 q^{-58} -84 q^{-59} -33 q^{-60} +29 q^{-61} +42 q^{-62} +18 q^{-63} -2 q^{-64} -18 q^{-65} -20 q^{-66} +4 q^{-67} +11 q^{-68} +3 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math> | |
||
coloured_jones_6 = |
coloured_jones_6 = | |
||
coloured_jones_7 = |
coloured_jones_7 = | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 53: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 37]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 12, 8, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 37]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[7, 12, 8, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[5, 14, 6, 15], X[13, 6, 14, 7], X[15, 18, 16, 1], X[9, 17, 10, 16], |
X[5, 14, 6, 15], X[13, 6, 14, 7], X[15, 18, 16, 1], X[9, 17, 10, 16], |
||
X[17, 9, 18, 8]]</nowiki></ |
X[17, 9, 18, 8]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 37]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 6, -2, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 37]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 37]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -5, 6, -2, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 12}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 37]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 37]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 37]]&) /@ { |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 14, 12, 16, 2, 6, 18, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 37]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, 2, -1, -3, 2, 1, 4, -3, 2, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 12}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 37]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 37]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_37_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 37]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus, |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki></ |
}</nowiki></code></td></tr> |
||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, {4, 7}, 2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 3, {4, 7}, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 37]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 11 2 |
|||
19 + -- - -- - 11 t + 2 t |
19 + -- - -- - 11 t + 2 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 37]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 - 3 z + 2 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 37]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 37], Knot[11, NonAlternating, 100]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 - 3 z + 2 z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 37]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 4 7 8 2 3 4 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 37], Knot[11, NonAlternating, 100]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 37]], KnotSignature[Knot[9, 37]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{45, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 37]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 3 4 7 8 2 3 4 |
|||
7 - q + -- - -- + -- - - - 7 q + 5 q - 2 q + q |
7 - q + -- - -- + -- - - - 7 q + 5 q - 2 q + q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 37]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 37]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 37]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -14 -12 -10 3 -6 4 6 8 10 |
|||
-3 - q + q + q - q + -- + q - 2 q + q + 2 q - q + |
-3 - q + q + q - q + -- + q - 2 q + q + 2 q - q + |
||
8 |
8 |
||
Line 102: | Line 178: | ||
12 14 |
12 14 |
||
q + q</nowiki></ |
q + q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 37]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 37]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-4 2 2 2 z 2 2 4 2 4 2 4 |
-4 2 2 2 z 2 2 4 2 4 2 4 |
||
-2 + a + 2 a - z - ---- + a z - a z + z + a z |
-2 + a + 2 a - z - ---- + a z - a z + z + a z |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 37]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 37]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
-4 2 5 z 3 2 2 z z 2 2 |
-4 2 5 z 3 2 2 z z 2 2 |
||
-2 + a - 2 a - --- - 7 a z - 2 a z + 12 z - ---- + -- + 14 a z + |
-2 + a - 2 a - --- - 7 a z - 2 a z + 12 z - ---- + -- + 14 a z + |
||
Line 132: | Line 218: | ||
5 z + ---- + 5 a z + 3 a z + ---- + 6 a z + 3 a z + z + a z |
5 z + ---- + 5 a z + 3 a z + ---- + 6 a z + 3 a z + z + a z |
||
2 a |
2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 37]], Vassiliev[3][Knot[9, 37]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, -1}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 37]], Vassiliev[3][Knot[9, 37]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-3, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 37]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4 1 2 1 2 2 5 2 |
|||
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 144: | Line 240: | ||
---- + --- + 4 q t + 3 q t + q t + 4 q t + q t + q t + q t |
---- + --- + 4 q t + 3 q t + q t + 4 q t + q t + q t + q t |
||
3 q t |
3 q t |
||
q t</nowiki></ |
q t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 37], 2][q]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 3 9 11 5 26 18 20 46 20 39 59 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 37], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 3 9 11 5 26 18 20 46 20 39 59 |
|||
58 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - |
58 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - |
||
14 12 11 10 9 8 7 6 5 4 3 |
14 12 11 10 9 8 7 6 5 4 3 |
||
Line 157: | Line 258: | ||
9 10 11 12 |
9 10 11 12 |
||
5 q + q - 2 q + q</nowiki></ |
5 q + q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
Latest revision as of 17:03, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 37's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X7,12,8,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X13,6,14,7 X15,18,16,1 X9,17,10,16 X17,9,18,8 |
Gauss code | -1, 4, -3, 1, -5, 6, -2, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7 |
Dowker-Thistlethwaite code | 4 10 14 12 16 2 6 18 8 |
Conway Notation | [3,21,21] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
[{11, 4}, {5, 3}, {4, 8}, {2, 5}, {7, 9}, {8, 6}, {3, 7}, {6, 1}, {10, 2}, {9, 11}, {1, 10}] |
[edit Notes on presentations of 9 37]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 37"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X7,12,8,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X13,6,14,7 X15,18,16,1 X9,17,10,16 X17,9,18,8 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -5, 6, -2, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 12 16 2 6 18 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3,21,21] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 4}, {5, 3}, {4, 8}, {2, 5}, {7, 9}, {8, 6}, {3, 7}, {6, 1}, {10, 2}, {9, 11}, {1, 10}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 37"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 45, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n100,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 37"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n100,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-3, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 37. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|