10 47: Difference between revisions
|  (Resetting knot page to basic template.) | No edit summary | ||
| Line 1: | Line 1: | ||
| <!--  --> | |||
| {{Template:Basic Knot Invariants|name=10_47}} | |||
| <!-- provide an anchor so we can return to the top of the page --> | |||
| <span id="top"></span> | |||
| <!-- this relies on transclusion for next and previous links --> | |||
| {{Knot Navigation Links|ext=gif}} | |||
| {| align=left | |||
| |- valign=top | |||
| |[[Image:{{PAGENAME}}.gif]] | |||
| |{{Rolfsen Knot Site Links|n=10|k=47|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,5,-10,2,-3,8,-6,9,-7,4,-5,3,-8,6,-9,7/goTop.html}} | |||
| |{{:{{PAGENAME}} Quick Notes}} | |||
| |} | |||
| <br style="clear:both" /> | |||
| {{:{{PAGENAME}} Further Notes and Views}} | |||
| {{Knot Presentations}} | |||
| {{3D Invariants}} | |||
| {{4D Invariants}} | |||
| {{Polynomial Invariants}} | |||
| {{Vassiliev Invariants}} | |||
| ===[[Khovanov Homology]]=== | |||
| The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. | |||
| <center><table border=1> | |||
| <tr align=center> | |||
| <td width=13.3333%><table cellpadding=0 cellspacing=0> | |||
|  <tr><td>\</td><td> </td><td>r</td></tr> | |||
| <tr><td> </td><td> \ </td><td> </td></tr> | |||
| <tr><td>j</td><td> </td><td>\</td></tr> | |||
| </table></td> | |||
|  <td width=6.66667%>-3</td  ><td width=6.66667%>-2</td  ><td width=6.66667%>-1</td  ><td width=6.66667%>0</td  ><td width=6.66667%>1</td  ><td width=6.66667%>2</td  ><td width=6.66667%>3</td  ><td width=6.66667%>4</td  ><td width=6.66667%>5</td  ><td width=6.66667%>6</td  ><td width=6.66667%>7</td  ><td width=13.3333%>χ</td></tr> | |||
| <tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> | |||
| <tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> | |||
| <tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td>-2</td></tr> | |||
| <tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>1</td></tr> | |||
| <tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>-1</td></tr> | |||
| <tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | |||
| <tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | |||
| <tr align=center><td>5</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> | |||
| <tr align=center><td>3</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | |||
| <tr align=center><td>1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | |||
| <tr align=center><td>-1</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | |||
| <tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | |||
| </table></center> | |||
| {{Computer Talk Header}} | |||
| <table> | |||
| <tr valign=top> | |||
| <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td> | |||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | |||
| </tr> | |||
| <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 47]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 47]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 17, 10, 16], X[5, 15, 6, 14],  | |||
|   X[15, 7, 16, 6], X[11, 19, 12, 18], X[13, 1, 14, 20],  | |||
|   X[17, 11, 18, 10], X[19, 13, 20, 12], X[7, 2, 8, 3]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 47]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -3, 8, -6, 9, -7, 4, -5, 3, -8,  | |||
|   6, -9, 7]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 47]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 1, -2, 1, 1, -2, -2}]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 47]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -4   3    6    7            2      3    4 | |||
| 7 + t   - -- + -- - - - 7 t + 6 t  - 3 t  + t | |||
|            3    2   t | |||
|           t    t</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 47]][z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      4      6    8 | |||
| 1 + 6 z  + 8 z  + 5 z  + z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 47]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 47]], KnotSignature[Knot[10, 47]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{41, 4}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 47]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>    1            2      3      4      5      6      7      8    9 | |||
| 2 - - - 3 q + 5 q  - 5 q  + 7 q  - 6 q  + 5 q  - 4 q  + 2 q  - q | |||
|     q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 47]}</nowiki></pre></td></tr> | |||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 47]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  -2    2    6    8      10    12      14    18    20      22    26 | |||
| -q   - q  + q  + q  + 4 q   + q   + 3 q   - q   - q   - 2 q   - q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 47]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                                   2     2       2 | |||
| 5    9    3     z    2 z   z    9 z   8 z   3 z   z     z    15 z | |||
| -- + -- + -- - --- + --- - -- - --- - --- - --- - --- + -- - ----- -  | |||
|  6    4    2    11    9     7    5     3     a     10    8     6 | |||
| a    a    a    a     a     a    a     a           a     a     a | |||
|       2      2    3       3      3       3       3      3      4 | |||
|   26 z    9 z    z     3 z    2 z    19 z    20 z    7 z    2 z | |||
|   ----- - ---- + --- - ---- + ---- + ----- + ----- + ---- + ---- -  | |||
|     4       2     11     9      7      5       3      a      10 | |||
|    a       a     a      a      a      a       a             a | |||
|      4       4       4       4      5      5       5       5      5 | |||
|   3 z    15 z    35 z    15 z    3 z    5 z    14 z    11 z    5 z | |||
|   ---- + ----- + ----- + ----- + ---- - ---- - ----- - ----- - ---- +  | |||
|     8      6       4       2       9      7      5       3      a | |||
|    a      a       a       a       a      a      a       a | |||
|      6       6       6       6      7    7    7    7      8      8 | |||
|   3 z    10 z    23 z    10 z    3 z    z    z    z    3 z    5 z | |||
|   ---- - ----- - ----- - ----- + ---- + -- - -- + -- + ---- + ---- +  | |||
|     8      6       4       2       7     5    3   a      6      4 | |||
|    a      a       a       a       a     a    a          a      a | |||
|      8    9    9 | |||
|   2 z    z    z | |||
|   ---- + -- + -- | |||
|     2     5    3 | |||
|    a     a    a</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 47]], Vassiliev[3][Knot[10, 47]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 11}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 47]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                         3 | |||
|    3      5     1      1     q    2 q   q       5        7 | |||
| 3 q  + 3 q  + ----- + ---- + -- + --- + -- + 3 q  t + 2 q  t +  | |||
|                3  3      2    2    t    t | |||
|               q  t    q t    t | |||
|      7  2      9  2      9  3      11  3      11  4      13  4 | |||
|   4 q  t  + 3 q  t  + 2 q  t  + 4 q   t  + 3 q   t  + 2 q   t  +  | |||
|    13  5      15  5    15  6    17  6    19  7 | |||
|   q   t  + 3 q   t  + q   t  + q   t  + q   t</nowiki></pre></td></tr> | |||
| </table> | |||
Revision as of 21:45, 27 August 2005
|  |  | 
|   | Visit 10 47's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 47's page at Knotilus! Visit 10 47's page at the original Knot Atlas! | 10 47 Quick Notes | 
Knot presentations
| Planar diagram presentation | X1425 X3849 X9,17,10,16 X5,15,6,14 X15,7,16,6 X11,19,12,18 X13,1,14,20 X17,11,18,10 X19,13,20,12 X7283 | 
| Gauss code | -1, 10, -2, 1, -4, 5, -10, 2, -3, 8, -6, 9, -7, 4, -5, 3, -8, 6, -9, 7 | 
| Dowker-Thistlethwaite code | 4 8 14 2 16 18 20 6 10 12 | 
| Conway Notation | [5,21,2] | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 47"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 41, 4 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (6, 11) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 47. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
| 
 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ | |||||||||
| 19 | 1 | -1 | |||||||||||||||||||
| 17 | 1 | 1 | |||||||||||||||||||
| 15 | 3 | 1 | -2 | ||||||||||||||||||
| 13 | 2 | 1 | 1 | ||||||||||||||||||
| 11 | 4 | 3 | -1 | ||||||||||||||||||
| 9 | 3 | 2 | 1 | ||||||||||||||||||
| 7 | 2 | 4 | 2 | ||||||||||||||||||
| 5 | 3 | 3 | 0 | ||||||||||||||||||
| 3 | 1 | 3 | 2 | ||||||||||||||||||
| 1 | 1 | 2 | -1 | ||||||||||||||||||
| -1 | 1 | 1 | |||||||||||||||||||
| -3 | 1 | -1 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[Knot[10, 47]] | 
| Out[2]= | 10 | 
| In[3]:= | PD[Knot[10, 47]] | 
| Out[3]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 17, 10, 16], X[5, 15, 6, 14],X[15, 7, 16, 6], X[11, 19, 12, 18], X[13, 1, 14, 20],X[17, 11, 18, 10], X[19, 13, 20, 12], X[7, 2, 8, 3]] | 
| In[4]:= | GaussCode[Knot[10, 47]] | 
| Out[4]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -3, 8, -6, 9, -7, 4, -5, 3, -8, 6, -9, 7] | 
| In[5]:= | BR[Knot[10, 47]] | 
| Out[5]= | BR[3, {1, 1, 1, 1, 1, -2, 1, 1, -2, -2}] | 
| In[6]:= | alex = Alexander[Knot[10, 47]][t] | 
| Out[6]= | -4 3 6 7 2 3 4 | 
| In[7]:= | Conway[Knot[10, 47]][z] | 
| Out[7]= | 2 4 6 8 1 + 6 z + 8 z + 5 z + z | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {Knot[10, 47]} | 
| In[9]:= | {KnotDet[Knot[10, 47]], KnotSignature[Knot[10, 47]]} | 
| Out[9]= | {41, 4} | 
| In[10]:= | J=Jones[Knot[10, 47]][q] | 
| Out[10]= | 1 2 3 4 5 6 7 8 9 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {Knot[10, 47]} | 
| In[12]:= | A2Invariant[Knot[10, 47]][q] | 
| Out[12]= | -2 2 6 8 10 12 14 18 20 22 26 -q - q + q + q + 4 q + q + 3 q - q - q - 2 q - q | 
| In[13]:= | Kauffman[Knot[10, 47]][a, z] | 
| Out[13]= | 2 2 2 | 
| In[14]:= | {Vassiliev[2][Knot[10, 47]], Vassiliev[3][Knot[10, 47]]} | 
| Out[14]= | {0, 11} | 
| In[15]:= | Kh[Knot[10, 47]][q, t] | 
| Out[15]= | 33 5 1 1 q 2 q q 5 7 | 


