9 25: Difference between revisions
|  (Resetting knot page to basic template.) | No edit summary | ||
| Line 1: | Line 1: | ||
| <!--  --> | |||
| {{Template:Basic Knot Invariants|name=9_25}} | |||
| <!-- provide an anchor so we can return to the top of the page --> | |||
| <span id="top"></span> | |||
| <!-- this relies on transclusion for next and previous links --> | |||
| {{Knot Navigation Links|ext=gif}} | |||
| {| align=left | |||
| |- valign=top | |||
| |[[Image:{{PAGENAME}}.gif]] | |||
| |{{Rolfsen Knot Site Links|n=9|k=25|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,7,-8,3,-5,6,-7,4,-6,5/goTop.html}} | |||
| |{{:{{PAGENAME}} Quick Notes}} | |||
| |} | |||
| <br style="clear:both" /> | |||
| {{:{{PAGENAME}} Further Notes and Views}} | |||
| {{Knot Presentations}} | |||
| {{3D Invariants}} | |||
| {{4D Invariants}} | |||
| {{Polynomial Invariants}} | |||
| {{Vassiliev Invariants}} | |||
| ===[[Khovanov Homology]]=== | |||
| The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. | |||
| <center><table border=1> | |||
| <tr align=center> | |||
| <td width=14.2857%><table cellpadding=0 cellspacing=0> | |||
|  <tr><td>\</td><td> </td><td>r</td></tr> | |||
| <tr><td> </td><td> \ </td><td> </td></tr> | |||
| <tr><td>j</td><td> </td><td>\</td></tr> | |||
| </table></td> | |||
|  <td width=7.14286%>-7</td  ><td width=7.14286%>-6</td  ><td width=7.14286%>-5</td  ><td width=7.14286%>-4</td  ><td width=7.14286%>-3</td  ><td width=7.14286%>-2</td  ><td width=7.14286%>-1</td  ><td width=7.14286%>0</td  ><td width=7.14286%>1</td  ><td width=7.14286%>2</td  ><td width=14.2857%>χ</td></tr> | |||
| <tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> | |||
| <tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> | |||
| <tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-2</td></tr> | |||
| <tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>1</td></tr> | |||
| <tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> | |||
| <tr align=center><td>-9</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | |||
| <tr align=center><td>-11</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | |||
| <tr align=center><td>-13</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> | |||
| <tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | |||
| <tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | |||
| </table></center> | |||
| {{Computer Talk Header}} | |||
| <table> | |||
| <tr valign=top> | |||
| <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td> | |||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | |||
| </tr> | |||
| <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 25]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 25]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 17, 10, 16],  | |||
|   X[13, 18, 14, 1], X[17, 14, 18, 15], X[15, 11, 16, 10],  | |||
|   X[11, 6, 12, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 25]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 25]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, 2, -1, -3, -2, -2, 4, -3, 4}]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 25]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      3    12             2 | |||
| -17 - -- + -- + 12 t - 3 t | |||
|        2   t | |||
|       t</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 25]][z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       4 | |||
| 1 - 3 z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 25], Knot[11, NonAlternating, 134]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 25]], KnotSignature[Knot[9, 25]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{47, -2}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 25]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -8   3    5    7    8    8    7    5 | |||
| -2 - q   + -- - -- + -- - -- + -- - -- + - + q | |||
|             7    6    5    4    3    2   q | |||
|            q    q    q    q    q    q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 25], Knot[11, NonAlternating, 25]}</nowiki></pre></td></tr> | |||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 25]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  -26    -24    2     -18    2     2     2     -6    -4   3     4 | |||
| -q    - q    + --- + q    + --- - --- - --- + q   - q   + -- + q | |||
|                 22           16    14    10                2 | |||
|                q            q     q     q                 q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 25]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     2      4      6    8    3      5      7      9        2 | |||
| 1 - a  - 3 a  - 3 a  - a  - a  z - a  z + a  z + a  z - 2 z  +  | |||
|      2  2       4  2       6  2      8  2        3      3  3 | |||
|   2 a  z  + 13 a  z  + 13 a  z  + 4 a  z  - 2 a z  + 3 a  z  +  | |||
|      5  3      7  3      9  3    4      2  4       4  4       6  4 | |||
|   5 a  z  - 2 a  z  - 2 a  z  + z  - 3 a  z  - 15 a  z  - 18 a  z  -  | |||
|      8  4        5      3  5       5  5      7  5    9  5      2  6 | |||
|   7 a  z  + 2 a z  - 3 a  z  - 10 a  z  - 4 a  z  + a  z  + 3 a  z  +  | |||
|      4  6      6  6      8  6      3  7      5  7      7  7    4  8 | |||
|   6 a  z  + 6 a  z  + 3 a  z  + 3 a  z  + 6 a  z  + 3 a  z  + a  z  +  | |||
|    6  8 | |||
|   a  z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 25]], Vassiliev[3][Knot[9, 25]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -1}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 25]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2    4     1        2        1        3        2        4        3 | |||
| -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- +  | |||
|  3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4 | |||
| q        q   t    q   t    q   t    q   t    q   t    q   t    q  t | |||
|     4       4       4       4      3      4     t          3  2 | |||
|   ----- + ----- + ----- + ----- + ---- + ---- + - + q t + q  t | |||
|    9  3    7  3    7  2    5  2    5      3     q | |||
|   q  t    q  t    q  t    q  t    q  t   q  t</nowiki></pre></td></tr> | |||
| </table> | |||
Revision as of 21:45, 27 August 2005
|  |  | 
|   | Visit 9 25's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 9 25's page at Knotilus! Visit 9 25's page at the original Knot Atlas! | 9 25 Quick Notes | 
Knot presentations
| Planar diagram presentation | X1425 X3849 X5,12,6,13 X9,17,10,16 X13,18,14,1 X17,14,18,15 X15,11,16,10 X11,6,12,7 X7283 | 
| Gauss code | -1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5 | 
| Dowker-Thistlethwaite code | 4 8 12 2 16 6 18 10 14 | 
| Conway Notation | [22,21,2] | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["9 25"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 47, -2 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (0, -1) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 25. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
| 
 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | χ | |||||||||
| 3 | 1 | 1 | ||||||||||||||||||
| 1 | 1 | -1 | ||||||||||||||||||
| -1 | 4 | 1 | 3 | |||||||||||||||||
| -3 | 4 | 2 | -2 | |||||||||||||||||
| -5 | 4 | 3 | 1 | |||||||||||||||||
| -7 | 4 | 4 | 0 | |||||||||||||||||
| -9 | 3 | 4 | -1 | |||||||||||||||||
| -11 | 2 | 4 | 2 | |||||||||||||||||
| -13 | 1 | 3 | -2 | |||||||||||||||||
| -15 | 2 | 2 | ||||||||||||||||||
| -17 | 1 | -1 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[Knot[9, 25]] | 
| Out[2]= | 9 | 
| In[3]:= | PD[Knot[9, 25]] | 
| Out[3]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 17, 10, 16],X[13, 18, 14, 1], X[17, 14, 18, 15], X[15, 11, 16, 10],X[11, 6, 12, 7], X[7, 2, 8, 3]] | 
| In[4]:= | GaussCode[Knot[9, 25]] | 
| Out[4]= | GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5] | 
| In[5]:= | BR[Knot[9, 25]] | 
| Out[5]= | BR[5, {-1, -1, 2, -1, -3, -2, -2, 4, -3, 4}] | 
| In[6]:= | alex = Alexander[Knot[9, 25]][t] | 
| Out[6]= | 3 12 2 | 
| In[7]:= | Conway[Knot[9, 25]][z] | 
| Out[7]= | 4 1 - 3 z | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {Knot[9, 25], Knot[11, NonAlternating, 134]} | 
| In[9]:= | {KnotDet[Knot[9, 25]], KnotSignature[Knot[9, 25]]} | 
| Out[9]= | {47, -2} | 
| In[10]:= | J=Jones[Knot[9, 25]][q] | 
| Out[10]= | -8 3 5 7 8 8 7 5 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {Knot[9, 25], Knot[11, NonAlternating, 25]} | 
| In[12]:= | A2Invariant[Knot[9, 25]][q] | 
| Out[12]= | -26 -24 2 -18 2 2 2 -6 -4 3 4 | 
| In[13]:= | Kauffman[Knot[9, 25]][a, z] | 
| Out[13]= | 2 4 6 8 3 5 7 9 2 | 
| In[14]:= | {Vassiliev[2][Knot[9, 25]], Vassiliev[3][Knot[9, 25]]} | 
| Out[14]= | {0, -1} | 
| In[15]:= | Kh[Knot[9, 25]][q, t] | 
| Out[15]= | 2 4 1 2 1 3 2 4 3 | 


