10 99: Difference between revisions
|  (Resetting knot page to basic template.) | No edit summary | ||
| Line 1: | Line 1: | ||
| <!--  --> | |||
| {{Template:Basic Knot Invariants|name=10_99}} | |||
| <!-- provide an anchor so we can return to the top of the page --> | |||
| <span id="top"></span> | |||
| <!-- this relies on transclusion for next and previous links --> | |||
| {{Knot Navigation Links|ext=gif}} | |||
| {| align=left | |||
| |- valign=top | |||
| |[[Image:{{PAGENAME}}.gif]] | |||
| |{{Rolfsen Knot Site Links|n=10|k=99|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,8,-1,4,-5,9,-2,3,-7,6,-4,5,-3,10,-8,7,-6/goTop.html}} | |||
| |{{:{{PAGENAME}} Quick Notes}} | |||
| |} | |||
| <br style="clear:both" /> | |||
| {{:{{PAGENAME}} Further Notes and Views}} | |||
| {{Knot Presentations}} | |||
| {{3D Invariants}} | |||
| {{4D Invariants}} | |||
| {{Polynomial Invariants}} | |||
| {{Vassiliev Invariants}} | |||
| ===[[Khovanov Homology]]=== | |||
| The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. | |||
| <center><table border=1> | |||
| <tr align=center> | |||
| <td width=13.3333%><table cellpadding=0 cellspacing=0> | |||
|  <tr><td>\</td><td> </td><td>r</td></tr> | |||
| <tr><td> </td><td> \ </td><td> </td></tr> | |||
| <tr><td>j</td><td> </td><td>\</td></tr> | |||
| </table></td> | |||
|  <td width=6.66667%>-5</td  ><td width=6.66667%>-4</td  ><td width=6.66667%>-3</td  ><td width=6.66667%>-2</td  ><td width=6.66667%>-1</td  ><td width=6.66667%>0</td  ><td width=6.66667%>1</td  ><td width=6.66667%>2</td  ><td width=6.66667%>3</td  ><td width=6.66667%>4</td  ><td width=6.66667%>5</td  ><td width=13.3333%>χ</td></tr> | |||
| <tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> | |||
| <tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> | |||
| <tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>1</td><td> </td><td>-4</td></tr> | |||
| <tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td>-2</td></tr> | |||
| <tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>8</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>-3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> | |||
| <tr align=center><td>-5</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>-7</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-4</td></tr> | |||
| <tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> | |||
| <tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | |||
| </table></center> | |||
| {{Computer Talk Header}} | |||
| <table> | |||
| <tr valign=top> | |||
| <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td> | |||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | |||
| </tr> | |||
| <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 99]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 99]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[16, 11, 17, 12], X[14, 7, 15, 8],  | |||
|   X[8, 15, 9, 16], X[20, 13, 1, 14], X[12, 19, 13, 20],  | |||
|   X[18, 6, 19, 5], X[2, 10, 3, 9], X[4, 18, 5, 17]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 99]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 6, -4, 5, -3, 10,  | |||
|   -8, 7, -6]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 99]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, 2, -1, 2, 2}]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 99]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -4   4    10   16              2      3    4 | |||
| 19 + t   - -- + -- - -- - 16 t + 10 t  - 4 t  + t | |||
|             3    2   t | |||
|            t    t</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 99]][z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      4      6    8 | |||
| 1 + 4 z  + 6 z  + 4 z  + z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 99]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 99]], KnotSignature[Knot[10, 99]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{81, 0}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 99]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -5   3    7    10   12              2      3      4    5 | |||
| 15 - q   + -- - -- + -- - -- - 12 q + 10 q  - 7 q  + 3 q  - q | |||
|             4    3    2   q | |||
|            q    q    q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 99]}</nowiki></pre></td></tr> | |||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 99]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -14    -12    3     -6    -4   6       2    4    6      10    12 | |||
| 1 - q    + q    - --- - q   - q   + -- + 6 q  - q  - q  - 3 q   + q   -  | |||
|                    10                2 | |||
|                   q                 q | |||
|    14 | |||
|   q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 99]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                                                    2 | |||
|     4       2   z    3 z   10 z               3      5         2   z | |||
| 9 + -- + 4 a  + -- - --- - ---- - 10 a z - 3 a  z + a  z - 18 z  + -- -  | |||
|      2           5    3     a                                       4 | |||
|     a           a    a                                             a | |||
|      2                        3      3       3 | |||
|   8 z       2  2    4  2   2 z    5 z    21 z          3      3  3 | |||
|   ---- - 8 a  z  + a  z  - ---- + ---- + ----- + 21 a z  + 5 a  z  -  | |||
|     2                        5      3      a | |||
|    a                        a      a | |||
|                        4      4                        5      5 | |||
|      5  3       4   5 z    9 z       2  4      4  4   z    9 z | |||
|   2 a  z  + 28 z  - ---- + ---- + 9 a  z  - 5 a  z  + -- - ---- -  | |||
|                       4      2                         5     3 | |||
|                      a      a                         a     a | |||
|       5                                          6      6 | |||
|   18 z          5      3  5    5  5       6   3 z    9 z       2  6 | |||
|   ----- - 18 a z  - 9 a  z  + a  z  - 24 z  + ---- - ---- - 9 a  z  +  | |||
|     a                                           4      2 | |||
|                                                a      a | |||
|                7      7                                 8 | |||
|      4  6   5 z    5 z         7      3  7       8   5 z       2  8 | |||
|   3 a  z  + ---- + ---- + 5 a z  + 5 a  z  + 10 z  + ---- + 5 a  z  +  | |||
|               3     a                                  2 | |||
|              a                                        a | |||
|      9 | |||
|   2 z         9 | |||
|   ---- + 2 a z | |||
|    a</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 99]], Vassiliev[3][Knot[10, 99]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 99]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8           1        2       1       5       2       5       5 | |||
| - + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +  | |||
| q          11  5    9  4    7  4    7  3    5  3    5  2    3  2 | |||
|           q   t    q  t    q  t    q  t    q  t    q  t    q  t | |||
|    7      5               3        3  2      5  2      5  3      7  3 | |||
|   ---- + --- + 5 q t + 7 q  t + 5 q  t  + 5 q  t  + 2 q  t  + 5 q  t  +  | |||
|    3     q t | |||
|   q  t | |||
|    7  4      9  4    11  5 | |||
|   q  t  + 2 q  t  + q   t</nowiki></pre></td></tr> | |||
| </table> | |||
Revision as of 21:45, 27 August 2005
|  |  | 
|   | Visit 10 99's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 99's page at Knotilus! Visit 10 99's page at the original Knot Atlas! | 10 99 Quick Notes | 
Knot presentations
| Planar diagram presentation | X6271 X10,4,11,3 X16,11,17,12 X14,7,15,8 X8,15,9,16 X20,13,1,14 X12,19,13,20 X18,6,19,5 X2,10,3,9 X4,18,5,17 | 
| Gauss code | 1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 6, -4, 5, -3, 10, -8, 7, -6 | 
| Dowker-Thistlethwaite code | 6 10 18 14 2 16 20 8 4 12 | 
| Conway Notation | [.2.2.20.20] | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 99"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 81, 0 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (4, 0) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 99. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
| 
 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | χ | |||||||||
| 11 | 1 | -1 | |||||||||||||||||||
| 9 | 2 | 2 | |||||||||||||||||||
| 7 | 5 | 1 | -4 | ||||||||||||||||||
| 5 | 5 | 2 | 3 | ||||||||||||||||||
| 3 | 7 | 5 | -2 | ||||||||||||||||||
| 1 | 8 | 5 | 3 | ||||||||||||||||||
| -1 | 5 | 8 | 3 | ||||||||||||||||||
| -3 | 5 | 7 | -2 | ||||||||||||||||||
| -5 | 2 | 5 | 3 | ||||||||||||||||||
| -7 | 1 | 5 | -4 | ||||||||||||||||||
| -9 | 2 | 2 | |||||||||||||||||||
| -11 | 1 | -1 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[Knot[10, 99]] | 
| Out[2]= | 10 | 
| In[3]:= | PD[Knot[10, 99]] | 
| Out[3]= | PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[16, 11, 17, 12], X[14, 7, 15, 8],X[8, 15, 9, 16], X[20, 13, 1, 14], X[12, 19, 13, 20],X[18, 6, 19, 5], X[2, 10, 3, 9], X[4, 18, 5, 17]] | 
| In[4]:= | GaussCode[Knot[10, 99]] | 
| Out[4]= | GaussCode[1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 6, -4, 5, -3, 10, -8, 7, -6] | 
| In[5]:= | BR[Knot[10, 99]] | 
| Out[5]= | BR[3, {-1, -1, 2, -1, -1, 2, 2, -1, 2, 2}] | 
| In[6]:= | alex = Alexander[Knot[10, 99]][t] | 
| Out[6]= | -4 4 10 16 2 3 4 | 
| In[7]:= | Conway[Knot[10, 99]][z] | 
| Out[7]= | 2 4 6 8 1 + 4 z + 6 z + 4 z + z | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {Knot[10, 99]} | 
| In[9]:= | {KnotDet[Knot[10, 99]], KnotSignature[Knot[10, 99]]} | 
| Out[9]= | {81, 0} | 
| In[10]:= | J=Jones[Knot[10, 99]][q] | 
| Out[10]= | -5 3 7 10 12 2 3 4 5 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {Knot[10, 99]} | 
| In[12]:= | A2Invariant[Knot[10, 99]][q] | 
| Out[12]= | -14 -12 3 -6 -4 6 2 4 6 10 12 | 
| In[13]:= | Kauffman[Knot[10, 99]][a, z] | 
| Out[13]= | 24 2 z 3 z 10 z 3 5 2 z | 
| In[14]:= | {Vassiliev[2][Knot[10, 99]], Vassiliev[3][Knot[10, 99]]} | 
| Out[14]= | {0, 0} | 
| In[15]:= | Kh[Knot[10, 99]][q, t] | 
| Out[15]= | 8 1 2 1 5 2 5 5 | 


