10 77: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_77}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=77|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,5,-10,2,-6,8,-7,9,-3,4,-5,3,-9,6,-8,7/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 77]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 77]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[13, 17, 14, 16], X[5, 15, 6, 14], |
|||
X[15, 7, 16, 6], X[9, 19, 10, 18], X[11, 1, 12, 20], |
|||
X[19, 11, 20, 10], X[17, 13, 18, 12], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 77]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 8, -7, 9, -3, 4, -5, 3, -9, |
|||
6, -8, 7]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 77]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, 1, 2, -1, -3, 2, 2, -3, -3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 77]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 7 14 2 3 |
|||
-17 + -- - -- + -- + 14 t - 7 t + 2 t |
|||
3 2 t |
|||
t t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 77]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 4 z + 5 z + 2 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 65], Knot[10, 77], Knot[11, NonAlternating, 71], |
|||
Knot[11, NonAlternating, 75]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 77]], KnotSignature[Knot[10, 77]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{63, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 77]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2 3 4 5 6 7 8 |
|||
-4 - q + - + 8 q - 9 q + 11 q - 10 q + 8 q - 6 q + 3 q - q |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 77]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 77]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -2 2 6 8 12 14 16 18 20 |
|||
-1 - q - q + 3 q + 4 q + 2 q + q - 3 q + q - q - q + |
|||
22 24 |
|||
q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 77]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-6 -4 5 z z z 3 z 4 z 2 2 z |
|||
-2 + a - a - -- + -- - -- - -- + --- + --- + 2 a z + 4 z + ---- - |
|||
2 9 7 5 3 a 8 |
|||
a a a a a a |
|||
2 2 2 3 3 3 3 4 |
|||
2 z z 7 z 2 z 2 z 6 z 5 z 3 4 6 z |
|||
---- - -- + ---- - ---- + ---- + ---- - ---- - 3 a z - 5 z - ---- + |
|||
6 4 2 9 7 5 a 8 |
|||
a a a a a a a |
|||
4 4 5 5 5 5 5 6 |
|||
8 z 3 z z 7 z 9 z 3 z z 5 6 3 z |
|||
---- - ---- + -- - ---- - ---- - ---- - -- + a z + 2 z + ---- - |
|||
4 2 9 7 5 3 a 8 |
|||
a a a a a a a |
|||
6 6 6 7 7 7 7 8 8 8 |
|||
3 z 9 z z 4 z 4 z 2 z 2 z 3 z 5 z 2 z |
|||
---- - ---- - -- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + |
|||
6 4 2 7 5 3 a 6 4 2 |
|||
a a a a a a a a a |
|||
9 9 |
|||
z z |
|||
-- + -- |
|||
5 3 |
|||
a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 77]], Vassiliev[3][Knot[10, 77]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 5}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 77]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 3 q 3 5 |
|||
5 q + 4 q + ----- + ----- + ---- + --- + - + 5 q t + 4 q t + |
|||
5 3 3 2 2 q t t |
|||
q t q t q t |
|||
5 2 7 2 7 3 9 3 9 4 11 4 |
|||
6 q t + 5 q t + 4 q t + 6 q t + 4 q t + 4 q t + |
|||
11 5 13 5 13 6 15 6 17 7 |
|||
2 q t + 4 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 20:51, 27 August 2005
|
|
|
|
Visit 10 77's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 77's page at Knotilus! Visit 10 77's page at the original Knot Atlas! |
10 77 Quick Notes |
Knot presentations
| Planar diagram presentation | X1425 X3849 X13,17,14,16 X5,15,6,14 X15,7,16,6 X9,19,10,18 X11,1,12,20 X19,11,20,10 X17,13,18,12 X7283 |
| Gauss code | -1, 10, -2, 1, -4, 5, -10, 2, -6, 8, -7, 9, -3, 4, -5, 3, -9, 6, -8, 7 |
| Dowker-Thistlethwaite code | 4 8 14 2 18 20 16 6 12 10 |
| Conway Notation | [3,21,2++] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | |
| Conway polynomial | |
| 2nd Alexander ideal (db, data sources) | |
| Determinant and Signature | { 63, 2 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +z^6 a^{-4} +4 z^4 a^{-2} +3 z^4 a^{-4} -z^4 a^{-6} -z^4+7 z^2 a^{-2} +2 z^2 a^{-4} -2 z^2 a^{-6} -3 z^2+5 a^{-2} - a^{-4} - a^{-6} -2} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-3} +z^9 a^{-5} +2 z^8 a^{-2} +5 z^8 a^{-4} +3 z^8 a^{-6} +2 z^7 a^{-1} +2 z^7 a^{-3} +4 z^7 a^{-5} +4 z^7 a^{-7} -z^6 a^{-2} -9 z^6 a^{-4} -3 z^6 a^{-6} +3 z^6 a^{-8} +2 z^6+a z^5-z^5 a^{-1} -3 z^5 a^{-3} -9 z^5 a^{-5} -7 z^5 a^{-7} +z^5 a^{-9} -3 z^4 a^{-2} +8 z^4 a^{-4} -6 z^4 a^{-8} -5 z^4-3 a z^3-5 z^3 a^{-1} +6 z^3 a^{-5} +2 z^3 a^{-7} -2 z^3 a^{-9} +7 z^2 a^{-2} -z^2 a^{-4} -2 z^2 a^{-6} +2 z^2 a^{-8} +4 z^2+2 a z+4 z a^{-1} +3 z a^{-3} -z a^{-5} -z a^{-7} +z a^{-9} -5 a^{-2} - a^{-4} + a^{-6} -2} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6-q^2-1+3 q^{-2} +4 q^{-6} +2 q^{-8} + q^{-12} -3 q^{-14} + q^{-16} - q^{-18} - q^{-20} + q^{-22} - q^{-24} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-q^{30}+3 q^{28}-4 q^{26}+3 q^{24}-3 q^{22}-3 q^{20}+8 q^{18}-14 q^{16}+17 q^{14}-19 q^{12}+12 q^{10}-q^8-16 q^6+34 q^4-51 q^2+53-43 q^{-2} +11 q^{-4} +26 q^{-6} -65 q^{-8} +95 q^{-10} -88 q^{-12} +60 q^{-14} -5 q^{-16} -49 q^{-18} +88 q^{-20} -85 q^{-22} +56 q^{-24} -42 q^{-28} +65 q^{-30} -46 q^{-32} +2 q^{-34} +59 q^{-36} -95 q^{-38} +96 q^{-40} -54 q^{-42} -20 q^{-44} +95 q^{-46} -142 q^{-48} +146 q^{-50} -104 q^{-52} +28 q^{-54} +54 q^{-56} -116 q^{-58} +135 q^{-60} -109 q^{-62} +47 q^{-64} +19 q^{-66} -69 q^{-68} +78 q^{-70} -50 q^{-72} - q^{-74} +52 q^{-76} -77 q^{-78} +62 q^{-80} -17 q^{-82} -47 q^{-84} +94 q^{-86} -108 q^{-88} +84 q^{-90} -33 q^{-92} -27 q^{-94} +73 q^{-96} -90 q^{-98} +81 q^{-100} -48 q^{-102} +9 q^{-104} +20 q^{-106} -40 q^{-108} +39 q^{-110} -29 q^{-112} +17 q^{-114} -3 q^{-116} -5 q^{-118} +8 q^{-120} -8 q^{-122} +5 q^{-124} -2 q^{-126} + q^{-128} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+q^3-2 q+4 q^{-1} - q^{-3} +2 q^{-5} + q^{-7} -2 q^{-9} +2 q^{-11} -3 q^{-13} +2 q^{-15} - q^{-17} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-q^{14}-q^{12}+3 q^{10}-4 q^8-3 q^6+10 q^4-7 q^2-9+20 q^{-2} -4 q^{-4} -16 q^{-6} +19 q^{-8} +4 q^{-10} -14 q^{-12} +6 q^{-14} +8 q^{-16} -4 q^{-18} -11 q^{-20} +9 q^{-22} +8 q^{-24} -20 q^{-26} +5 q^{-28} +16 q^{-30} -18 q^{-32} -2 q^{-34} +16 q^{-36} -8 q^{-38} -5 q^{-40} +7 q^{-42} - q^{-44} -2 q^{-46} + q^{-48} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{33}+q^{31}+q^{29}-2 q^{25}+2 q^{23}+2 q^{21}-4 q^{19}-4 q^{17}+8 q^{15}+8 q^{13}-16 q^{11}-18 q^9+21 q^7+34 q^5-26 q^3-53 q+17 q^{-1} +83 q^{-3} -6 q^{-5} -93 q^{-7} -18 q^{-9} +103 q^{-11} +43 q^{-13} -93 q^{-15} -60 q^{-17} +75 q^{-19} +70 q^{-21} -46 q^{-23} -69 q^{-25} +16 q^{-27} +67 q^{-29} +11 q^{-31} -54 q^{-33} -47 q^{-35} +43 q^{-37} +66 q^{-39} -27 q^{-41} -92 q^{-43} +11 q^{-45} +102 q^{-47} +13 q^{-49} -104 q^{-51} -36 q^{-53} +95 q^{-55} +54 q^{-57} -73 q^{-59} -64 q^{-61} +46 q^{-63} +65 q^{-65} -20 q^{-67} -55 q^{-69} +3 q^{-71} +36 q^{-73} +8 q^{-75} -21 q^{-77} -9 q^{-79} +11 q^{-81} +5 q^{-83} -4 q^{-85} -3 q^{-87} + q^{-89} +2 q^{-91} - q^{-93} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-q^{54}-q^{52}-q^{48}+4 q^{46}-2 q^{44}+3 q^{40}-6 q^{38}+4 q^{36}-7 q^{34}+4 q^{32}+19 q^{30}-7 q^{28}-5 q^{26}-37 q^{24}-2 q^{22}+61 q^{20}+30 q^{18}-2 q^{16}-118 q^{14}-73 q^{12}+101 q^{10}+147 q^8+98 q^6-205 q^4-265 q^2+19+282 q^{-2} +365 q^{-4} -143 q^{-6} -484 q^{-8} -253 q^{-10} +248 q^{-12} +638 q^{-14} +125 q^{-16} -495 q^{-18} -533 q^{-20} + q^{-22} +669 q^{-24} +391 q^{-26} -266 q^{-28} -575 q^{-30} -247 q^{-32} +436 q^{-34} +454 q^{-36} +15 q^{-38} -400 q^{-40} -353 q^{-42} +127 q^{-44} +365 q^{-46} +226 q^{-48} -169 q^{-50} -366 q^{-52} -164 q^{-54} +248 q^{-56} +401 q^{-58} +54 q^{-60} -358 q^{-62} -433 q^{-64} +108 q^{-66} +535 q^{-68} +300 q^{-70} -271 q^{-72} -646 q^{-74} -116 q^{-76} +519 q^{-78} +515 q^{-80} -36 q^{-82} -661 q^{-84} -356 q^{-86} +274 q^{-88} +545 q^{-90} +251 q^{-92} -419 q^{-94} -421 q^{-96} -42 q^{-98} +329 q^{-100} +355 q^{-102} -101 q^{-104} -257 q^{-106} -184 q^{-108} +65 q^{-110} +233 q^{-112} +49 q^{-114} -56 q^{-116} -119 q^{-118} -42 q^{-120} +77 q^{-122} +36 q^{-124} +16 q^{-126} -35 q^{-128} -28 q^{-130} +17 q^{-132} +5 q^{-134} +10 q^{-136} -6 q^{-138} -8 q^{-140} +4 q^{-142} +3 q^{-146} - q^{-148} -2 q^{-150} + q^{-152} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{85}+q^{83}+q^{81}+q^{77}-q^{75}-4 q^{73}+2 q^{69}-q^{67}+5 q^{65}+5 q^{63}-5 q^{61}-7 q^{59}-6 q^{57}-7 q^{55}+10 q^{53}+27 q^{51}+16 q^{49}-13 q^{47}-40 q^{45}-48 q^{43}-2 q^{41}+71 q^{39}+106 q^{37}+40 q^{35}-95 q^{33}-192 q^{31}-137 q^{29}+83 q^{27}+312 q^{25}+319 q^{23}+q^{21}-428 q^{19}-597 q^{17}-241 q^{15}+475 q^{13}+948 q^{11}+668 q^9-328 q^7-1310 q^5-1302 q^3-63 q+1503 q^{-1} +2026 q^{-3} +824 q^{-5} -1426 q^{-7} -2748 q^{-9} -1748 q^{-11} +953 q^{-13} +3162 q^{-15} +2820 q^{-17} -116 q^{-19} -3236 q^{-21} -3677 q^{-23} -899 q^{-25} +2809 q^{-27} +4208 q^{-29} +1925 q^{-31} -2061 q^{-33} -4257 q^{-35} -2715 q^{-37} +1139 q^{-39} +3861 q^{-41} +3146 q^{-43} -227 q^{-45} -3169 q^{-47} -3204 q^{-49} -520 q^{-51} +2345 q^{-53} +2963 q^{-55} +1055 q^{-57} -1535 q^{-59} -2576 q^{-61} -1397 q^{-63} +803 q^{-65} +2174 q^{-67} +1648 q^{-69} -213 q^{-71} -1814 q^{-73} -1871 q^{-75} -366 q^{-77} +1546 q^{-79} +2186 q^{-81} +883 q^{-83} -1300 q^{-85} -2505 q^{-87} -1536 q^{-89} +1021 q^{-91} +2888 q^{-93} +2206 q^{-95} -606 q^{-97} -3121 q^{-99} -2953 q^{-101} -7 q^{-103} +3176 q^{-105} +3615 q^{-107} +782 q^{-109} -2875 q^{-111} -4075 q^{-113} -1659 q^{-115} +2233 q^{-117} +4178 q^{-119} +2483 q^{-121} -1309 q^{-123} -3848 q^{-125} -3048 q^{-127} +245 q^{-129} +3108 q^{-131} +3230 q^{-133} +729 q^{-135} -2110 q^{-137} -2971 q^{-139} -1404 q^{-141} +1053 q^{-143} +2346 q^{-145} +1681 q^{-147} -151 q^{-149} -1574 q^{-151} -1564 q^{-153} -411 q^{-155} +811 q^{-157} +1185 q^{-159} +648 q^{-161} -239 q^{-163} -753 q^{-165} -594 q^{-167} -70 q^{-169} +357 q^{-171} +417 q^{-173} +184 q^{-175} -115 q^{-177} -241 q^{-179} -153 q^{-181} +5 q^{-183} +102 q^{-185} +92 q^{-187} +31 q^{-189} -35 q^{-191} -50 q^{-193} -16 q^{-195} +10 q^{-197} +15 q^{-199} +7 q^{-201} +2 q^{-203} -8 q^{-205} -6 q^{-207} +5 q^{-209} +3 q^{-211} - q^{-213} -3 q^{-219} + q^{-221} +2 q^{-223} - q^{-225} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6-q^2-1+3 q^{-2} +4 q^{-6} +2 q^{-8} + q^{-12} -3 q^{-14} + q^{-16} - q^{-18} - q^{-20} + q^{-22} - q^{-24} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-2 q^{18}+6 q^{16}-12 q^{14}+23 q^{12}-38 q^{10}+58 q^8-92 q^6+128 q^4-182 q^2+234-300 q^{-2} +352 q^{-4} -382 q^{-6} +392 q^{-8} -338 q^{-10} +257 q^{-12} -96 q^{-14} -70 q^{-16} +282 q^{-18} -482 q^{-20} +652 q^{-22} -784 q^{-24} +832 q^{-26} -831 q^{-28} +740 q^{-30} -598 q^{-32} +410 q^{-34} -198 q^{-36} -8 q^{-38} +188 q^{-40} -324 q^{-42} +406 q^{-44} -436 q^{-46} +416 q^{-48} -360 q^{-50} +291 q^{-52} -218 q^{-54} +148 q^{-56} -92 q^{-58} +54 q^{-60} -28 q^{-62} +12 q^{-64} -4 q^{-66} + q^{-68} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-q^{14}+q^{12}+2 q^{10}-3 q^8-4 q^6+2 q^4+2 q^2-8-5 q^{-2} +9 q^{-4} + q^{-6} -7 q^{-8} +4 q^{-10} +12 q^{-12} +3 q^{-14} + q^{-16} +11 q^{-18} +7 q^{-20} -7 q^{-22} + q^{-26} -10 q^{-28} -7 q^{-30} +5 q^{-32} - q^{-34} -9 q^{-36} +7 q^{-40} - q^{-42} -7 q^{-44} +4 q^{-46} +5 q^{-48} -2 q^{-50} -2 q^{-52} + q^{-54} +2 q^{-56} - q^{-58} - q^{-60} + q^{-62} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}-q^{12}+q^{10}+2 q^8-5 q^6-q^4+3 q^2-13-2 q^{-2} +14 q^{-4} -11 q^{-6} +5 q^{-8} +23 q^{-10} -4 q^{-12} +12 q^{-16} -4 q^{-18} -7 q^{-20} -2 q^{-22} +5 q^{-24} -4 q^{-26} -11 q^{-28} +11 q^{-30} + q^{-32} -17 q^{-34} +11 q^{-36} +5 q^{-38} -14 q^{-40} +8 q^{-42} +3 q^{-44} -7 q^{-46} +4 q^{-48} + q^{-50} -2 q^{-52} + q^{-54} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7-2 q^3-2 q^{-1} +3 q^{-3} +5 q^{-7} +3 q^{-9} +3 q^{-11} + q^{-13} - q^{-15} -3 q^{-19} + q^{-21} -2 q^{-23} + q^{-25} -2 q^{-27} + q^{-29} - q^{-31} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}+q^{12}+2 q^{10}+q^8-2 q^6-2 q^4-3 q^2-9-12 q^{-2} -4 q^{-4} +3 q^{-6} -7 q^{-8} +4 q^{-10} +23 q^{-12} +17 q^{-14} +3 q^{-16} +15 q^{-18} +17 q^{-20} -4 q^{-22} -10 q^{-24} +4 q^{-26} - q^{-28} -17 q^{-30} +8 q^{-34} -12 q^{-36} -8 q^{-38} +10 q^{-40} -3 q^{-42} -14 q^{-44} +2 q^{-46} +9 q^{-48} -5 q^{-50} -7 q^{-52} +7 q^{-54} +5 q^{-56} -5 q^{-58} +4 q^{-62} - q^{-64} - q^{-66} + q^{-68} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8-2 q^4-q^2-1-2 q^{-2} +3 q^{-4} +5 q^{-8} +4 q^{-10} +4 q^{-12} +3 q^{-14} + q^{-16} -2 q^{-20} -3 q^{-24} + q^{-26} -2 q^{-28} -2 q^{-34} + q^{-36} - q^{-38} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{14}+q^{12}-3 q^{10}+4 q^8-7 q^6+9 q^4-13 q^2+15-16 q^{-2} +18 q^{-4} -13 q^{-6} +11 q^{-8} - q^{-10} -4 q^{-12} +16 q^{-14} -22 q^{-16} +30 q^{-18} -33 q^{-20} +34 q^{-22} -33 q^{-24} +26 q^{-26} -19 q^{-28} +9 q^{-30} - q^{-32} -7 q^{-34} +13 q^{-36} -17 q^{-38} +18 q^{-40} -18 q^{-42} +15 q^{-44} -11 q^{-46} +8 q^{-48} -5 q^{-50} +2 q^{-52} - q^{-54} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{24}-q^{20}-q^{18}+2 q^{16}+3 q^{14}-q^{12}-6 q^{10}-4 q^8+4 q^6+8 q^4-3 q^2-15-8 q^{-2} +11 q^{-4} +17 q^{-6} -4 q^{-8} -17 q^{-10} -3 q^{-12} +20 q^{-14} +15 q^{-16} -6 q^{-18} -12 q^{-20} +7 q^{-22} +15 q^{-24} + q^{-26} -13 q^{-28} -3 q^{-30} +10 q^{-32} +4 q^{-34} -11 q^{-36} -9 q^{-38} +8 q^{-40} +9 q^{-42} -8 q^{-44} -14 q^{-46} +4 q^{-48} +16 q^{-50} +2 q^{-52} -18 q^{-54} -12 q^{-56} +13 q^{-58} +18 q^{-60} -4 q^{-62} -18 q^{-64} -6 q^{-66} +13 q^{-68} +10 q^{-70} -5 q^{-72} -9 q^{-74} - q^{-76} +6 q^{-78} +3 q^{-80} -2 q^{-82} -2 q^{-84} + q^{-88} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-q^{16}+2 q^{14}-2 q^{12}+4 q^{10}-6 q^8+4 q^6-10 q^4+7 q^2-16+8 q^{-2} -14 q^{-4} +15 q^{-6} -10 q^{-8} +13 q^{-10} + q^{-12} +13 q^{-14} +10 q^{-16} -3 q^{-18} +14 q^{-20} -14 q^{-22} +22 q^{-24} -26 q^{-26} +21 q^{-28} -29 q^{-30} +26 q^{-32} -24 q^{-34} +19 q^{-36} -20 q^{-38} +11 q^{-40} -6 q^{-42} + q^{-44} - q^{-46} -8 q^{-48} +11 q^{-50} -12 q^{-52} +13 q^{-54} -15 q^{-56} +15 q^{-58} -12 q^{-60} +10 q^{-62} -9 q^{-64} +7 q^{-66} -4 q^{-68} +3 q^{-70} -2 q^{-72} + q^{-74} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-q^{30}+3 q^{28}-4 q^{26}+3 q^{24}-3 q^{22}-3 q^{20}+8 q^{18}-14 q^{16}+17 q^{14}-19 q^{12}+12 q^{10}-q^8-16 q^6+34 q^4-51 q^2+53-43 q^{-2} +11 q^{-4} +26 q^{-6} -65 q^{-8} +95 q^{-10} -88 q^{-12} +60 q^{-14} -5 q^{-16} -49 q^{-18} +88 q^{-20} -85 q^{-22} +56 q^{-24} -42 q^{-28} +65 q^{-30} -46 q^{-32} +2 q^{-34} +59 q^{-36} -95 q^{-38} +96 q^{-40} -54 q^{-42} -20 q^{-44} +95 q^{-46} -142 q^{-48} +146 q^{-50} -104 q^{-52} +28 q^{-54} +54 q^{-56} -116 q^{-58} +135 q^{-60} -109 q^{-62} +47 q^{-64} +19 q^{-66} -69 q^{-68} +78 q^{-70} -50 q^{-72} - q^{-74} +52 q^{-76} -77 q^{-78} +62 q^{-80} -17 q^{-82} -47 q^{-84} +94 q^{-86} -108 q^{-88} +84 q^{-90} -33 q^{-92} -27 q^{-94} +73 q^{-96} -90 q^{-98} +81 q^{-100} -48 q^{-102} +9 q^{-104} +20 q^{-106} -40 q^{-108} +39 q^{-110} -29 q^{-112} +17 q^{-114} -3 q^{-116} -5 q^{-118} +8 q^{-120} -8 q^{-122} +5 q^{-124} -2 q^{-126} + q^{-128} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 77"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 63, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +z^6 a^{-4} +4 z^4 a^{-2} +3 z^4 a^{-4} -z^4 a^{-6} -z^4+7 z^2 a^{-2} +2 z^2 a^{-4} -2 z^2 a^{-6} -3 z^2+5 a^{-2} - a^{-4} - a^{-6} -2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-3} +z^9 a^{-5} +2 z^8 a^{-2} +5 z^8 a^{-4} +3 z^8 a^{-6} +2 z^7 a^{-1} +2 z^7 a^{-3} +4 z^7 a^{-5} +4 z^7 a^{-7} -z^6 a^{-2} -9 z^6 a^{-4} -3 z^6 a^{-6} +3 z^6 a^{-8} +2 z^6+a z^5-z^5 a^{-1} -3 z^5 a^{-3} -9 z^5 a^{-5} -7 z^5 a^{-7} +z^5 a^{-9} -3 z^4 a^{-2} +8 z^4 a^{-4} -6 z^4 a^{-8} -5 z^4-3 a z^3-5 z^3 a^{-1} +6 z^3 a^{-5} +2 z^3 a^{-7} -2 z^3 a^{-9} +7 z^2 a^{-2} -z^2 a^{-4} -2 z^2 a^{-6} +2 z^2 a^{-8} +4 z^2+2 a z+4 z a^{-1} +3 z a^{-3} -z a^{-5} -z a^{-7} +z a^{-9} -5 a^{-2} - a^{-4} + a^{-6} -2} |
Vassiliev invariants
| V2 and V3: | (4, 5) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 10 77. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ | |||||||||
| 17 | 1 | -1 | |||||||||||||||||||
| 15 | 2 | 2 | |||||||||||||||||||
| 13 | 4 | 1 | -3 | ||||||||||||||||||
| 11 | 4 | 2 | 2 | ||||||||||||||||||
| 9 | 6 | 4 | -2 | ||||||||||||||||||
| 7 | 5 | 4 | 1 | ||||||||||||||||||
| 5 | 4 | 6 | 2 | ||||||||||||||||||
| 3 | 4 | 5 | -1 | ||||||||||||||||||
| 1 | 1 | 5 | 4 | ||||||||||||||||||
| -1 | 1 | 3 | -2 | ||||||||||||||||||
| -3 | 1 | 1 | |||||||||||||||||||
| -5 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 77]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 77]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[13, 17, 14, 16], X[5, 15, 6, 14],X[15, 7, 16, 6], X[9, 19, 10, 18], X[11, 1, 12, 20],X[19, 11, 20, 10], X[17, 13, 18, 12], X[7, 2, 8, 3]] |
In[4]:= | GaussCode[Knot[10, 77]] |
Out[4]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 8, -7, 9, -3, 4, -5, 3, -9, 6, -8, 7] |
In[5]:= | BR[Knot[10, 77]] |
Out[5]= | BR[4, {1, 1, 1, 1, 2, -1, -3, 2, 2, -3, -3}] |
In[6]:= | alex = Alexander[Knot[10, 77]][t] |
Out[6]= | 2 7 14 2 3 |
In[7]:= | Conway[Knot[10, 77]][z] |
Out[7]= | 2 4 6 1 + 4 z + 5 z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 65], Knot[10, 77], Knot[11, NonAlternating, 71],
Knot[11, NonAlternating, 75]} |
In[9]:= | {KnotDet[Knot[10, 77]], KnotSignature[Knot[10, 77]]} |
Out[9]= | {63, 2} |
In[10]:= | J=Jones[Knot[10, 77]][q] |
Out[10]= | -2 2 2 3 4 5 6 7 8 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 77]} |
In[12]:= | A2Invariant[Knot[10, 77]][q] |
Out[12]= | -6 -2 2 6 8 12 14 16 18 20 |
In[13]:= | Kauffman[Knot[10, 77]][a, z] |
Out[13]= | 2-6 -4 5 z z z 3 z 4 z 2 2 z |
In[14]:= | {Vassiliev[2][Knot[10, 77]], Vassiliev[3][Knot[10, 77]]} |
Out[14]= | {0, 5} |
In[15]:= | Kh[Knot[10, 77]][q, t] |
Out[15]= | 3 1 1 1 3 q 3 5 |


