K11a189: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 189 | |
k = 189 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,2,-1,3,-10,4,-11,5,-9,6,-2,7,-3,8,-4,9,-6,10,-8,11,-5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,2,-1,3,-10,4,-11,5,-9,6,-2,7,-3,8,-4,9,-6,10,-8,11,-5/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
| Line 58: | Line 58: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 189]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 189]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 01:51, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X12,3,13,4 X14,6,15,5 X16,7,17,8 X22,10,1,9 X18,11,19,12 X2,13,3,14 X20,16,21,15 X10,17,11,18 X6,19,7,20 X8,22,9,21 |
| Gauss code | 1, -7, 2, -1, 3, -10, 4, -11, 5, -9, 6, -2, 7, -3, 8, -4, 9, -6, 10, -8, 11, -5 |
| Dowker-Thistlethwaite code | 4 12 14 16 22 18 2 20 10 6 8 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-6 t^3+17 t^2-31 t+39-31 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+2 z^6+z^4-z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 149, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+4 q^4-9 q^3+16 q^2-21 q+24-24 q^{-1} +21 q^{-2} -15 q^{-3} +9 q^{-4} -4 q^{-5} + q^{-6} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8-2 a^2 z^6-z^6 a^{-2} +5 z^6+a^4 z^4-7 a^2 z^4-3 z^4 a^{-2} +10 z^4+2 a^4 z^2-8 a^2 z^2-3 z^2 a^{-2} +8 z^2+a^4-2 a^2+2} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 a^2 z^{10}+2 z^{10}+6 a^3 z^9+13 a z^9+7 z^9 a^{-1} +7 a^4 z^8+15 a^2 z^8+10 z^8 a^{-2} +18 z^8+4 a^5 z^7-4 a^3 z^7-15 a z^7+z^7 a^{-1} +8 z^7 a^{-3} +a^6 z^6-15 a^4 z^6-42 a^2 z^6-13 z^6 a^{-2} +4 z^6 a^{-4} -43 z^6-9 a^5 z^5-12 a^3 z^5-8 a z^5-17 z^5 a^{-1} -11 z^5 a^{-3} +z^5 a^{-5} -2 a^6 z^4+10 a^4 z^4+34 a^2 z^4+6 z^4 a^{-2} -5 z^4 a^{-4} +33 z^4+6 a^5 z^3+11 a^3 z^3+11 a z^3+13 z^3 a^{-1} +6 z^3 a^{-3} -z^3 a^{-5} +a^6 z^2-3 a^4 z^2-13 a^2 z^2-z^2 a^{-2} +2 z^2 a^{-4} -12 z^2-a^5 z-2 a^3 z-3 a z-3 z a^{-1} -z a^{-3} +a^4+2 a^2+2} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-q^{16}+2 q^{12}-4 q^{10}+4 q^8-q^6-q^4+3 q^2-5+5 q^{-2} -3 q^{-4} +2 q^{-6} +3 q^{-8} -3 q^{-10} +2 q^{-12} - q^{-14} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{94}-3 q^{92}+8 q^{90}-16 q^{88}+22 q^{86}-25 q^{84}+14 q^{82}+18 q^{80}-66 q^{78}+128 q^{76}-176 q^{74}+175 q^{72}-102 q^{70}-63 q^{68}+291 q^{66}-498 q^{64}+599 q^{62}-499 q^{60}+178 q^{58}+290 q^{56}-759 q^{54}+1036 q^{52}-973 q^{50}+548 q^{48}+98 q^{46}-728 q^{44}+1080 q^{42}-1000 q^{40}+535 q^{38}+131 q^{36}-693 q^{34}+892 q^{32}-650 q^{30}+51 q^{28}+623 q^{26}-1060 q^{24}+1059 q^{22}-580 q^{20}-201 q^{18}+996 q^{16}-1494 q^{14}+1489 q^{12}-975 q^{10}+111 q^8+783 q^6-1390 q^4+1499 q^2-1079+330 q^{-2} +455 q^{-4} -964 q^{-6} +1000 q^{-8} -594 q^{-10} -53 q^{-12} +636 q^{-14} -876 q^{-16} +682 q^{-18} -137 q^{-20} -501 q^{-22} +962 q^{-24} -1052 q^{-26} +755 q^{-28} -204 q^{-30} -393 q^{-32} +806 q^{-34} -921 q^{-36} +752 q^{-38} -387 q^{-40} -5 q^{-42} +304 q^{-44} -454 q^{-46} +439 q^{-48} -320 q^{-50} +157 q^{-52} -7 q^{-54} -89 q^{-56} +127 q^{-58} -122 q^{-60} +89 q^{-62} -47 q^{-64} +15 q^{-66} +8 q^{-68} -17 q^{-70} +16 q^{-72} -13 q^{-74} +7 q^{-76} -3 q^{-78} + q^{-80} } |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a189"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-6 t^3+17 t^2-31 t+39-31 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+2 z^6+z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 149, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+4 q^4-9 q^3+16 q^2-21 q+24-24 q^{-1} +21 q^{-2} -15 q^{-3} +9 q^{-4} -4 q^{-5} + q^{-6} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8-2 a^2 z^6-z^6 a^{-2} +5 z^6+a^4 z^4-7 a^2 z^4-3 z^4 a^{-2} +10 z^4+2 a^4 z^2-8 a^2 z^2-3 z^2 a^{-2} +8 z^2+a^4-2 a^2+2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 a^2 z^{10}+2 z^{10}+6 a^3 z^9+13 a z^9+7 z^9 a^{-1} +7 a^4 z^8+15 a^2 z^8+10 z^8 a^{-2} +18 z^8+4 a^5 z^7-4 a^3 z^7-15 a z^7+z^7 a^{-1} +8 z^7 a^{-3} +a^6 z^6-15 a^4 z^6-42 a^2 z^6-13 z^6 a^{-2} +4 z^6 a^{-4} -43 z^6-9 a^5 z^5-12 a^3 z^5-8 a z^5-17 z^5 a^{-1} -11 z^5 a^{-3} +z^5 a^{-5} -2 a^6 z^4+10 a^4 z^4+34 a^2 z^4+6 z^4 a^{-2} -5 z^4 a^{-4} +33 z^4+6 a^5 z^3+11 a^3 z^3+11 a z^3+13 z^3 a^{-1} +6 z^3 a^{-3} -z^3 a^{-5} +a^6 z^2-3 a^4 z^2-13 a^2 z^2-z^2 a^{-2} +2 z^2 a^{-4} -12 z^2-a^5 z-2 a^3 z-3 a z-3 z a^{-1} -z a^{-3} +a^4+2 a^2+2} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {K11a30, K11a272,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a189"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-6 t^3+17 t^2-31 t+39-31 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+4 q^4-9 q^3+16 q^2-21 q+24-24 q^{-1} +21 q^{-2} -15 q^{-3} +9 q^{-4} -4 q^{-5} + q^{-6} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a30, K11a272,} |
Vassiliev invariants
| V2 and V3: | (-1, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of K11a189. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|






