L10a170: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				DrorsRobot (talk | contribs) No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| Line 16: | Line 16: | ||
k = 170 |  | 
  k = 170 |  | 
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-10:9,-2,7,-6:2,-1,5,-3,8,-9:4,-5,10,-8,6,-7/goTop.html |  | 
  KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-10:9,-2,7,-6:2,-1,5,-3,8,-9:4,-5,10,-8,6,-7/goTop.html |  | 
||
braid_table     = <table cellspacing=0 cellpadding=0 border=0>  | 
  braid_table     = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre">  | 
||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
  <tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
  <tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
||
| Line 49: | Line 49: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2>Loading KnotTheory` (version of September   | 
           <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, Alternating, 170]]</nowiki></pre></td></tr>  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, Alternating, 170]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>  | 
||
Latest revision as of 02:38, 3 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
Link Presentations
[edit Notes on L10a170's Link Presentations]
| Planar diagram presentation | X6172 X12,6,13,5 X8493 X2,16,3,15 X16,7,17,8 X14,19,11,20 X20,13,15,14 X18,10,19,9 X10,12,5,11 X4,17,1,18 | 
| Gauss code | {1, -4, 3, -10}, {9, -2, 7, -6}, {2, -1, 5, -3, 8, -9}, {4, -5, 10, -8, 6, -7} | 
| A Braid Representative | |||||
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | 1 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-6} +4 z^5 a^{-5} -2 z^3 a^{-5} +a^4 z^6+8 z^6 a^{-4} -2 a^4 z^4-7 z^4 a^{-4} +a^4 z^2+z^2 a^{-4} +4 a^3 z^7+11 z^7 a^{-3} -11 a^3 z^5-17 z^5 a^{-3} +10 a^3 z^3+12 z^3 a^{-3} +a^3 z^{-3} + a^{-3} z^{-3} -3 a^3 z-3 z a^{-3} -2 a^3 z^{-1} -2 a^{-3} z^{-1} +5 a^2 z^8+8 z^8 a^{-2} -9 a^2 z^6-6 z^6 a^{-2} -a^2 z^4-6 z^4 a^{-2} +3 a^2 z^2+3 z^2 a^{-2} -3 a^2 z^{-2} -3 a^{-2} z^{-2} +4 a^2+4 a^{-2} +2 a z^9+2 z^9 a^{-1} +11 a z^7+18 z^7 a^{-1} -43 a z^5-53 z^5 a^{-1} +40 a z^3+44 z^3 a^{-1} +3 a z^{-3} +3 a^{-1} z^{-3} -11 a z-11 z a^{-1} -3 a z^{-1} -3 a^{-1} z^{-1} +13 z^8-24 z^6+3 z^4+4 z^2-6 z^{-2} +7} (db) | 
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
  | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



