# L10a169

 (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L10a169 at Knotilus! Compare L10n107.
 Japanese family symbol

 Planar diagram presentation X6172 X12,6,13,5 X8493 X2,16,3,15 X16,7,17,8 X14,9,11,10 X20,13,15,14 X10,19,5,20 X18,12,19,11 X4,17,1,18 Gauss code {1, -4, 3, -10}, {9, -2, 7, -6}, {2, -1, 5, -3, 6, -8}, {4, -5, 10, -9, 8, -7}

### Polynomial invariants

 Multivariable Alexander Polynomial (in ${\displaystyle u}$, ${\displaystyle v}$, ${\displaystyle w}$, ...) ${\displaystyle {\frac {(u-1)(v-1)(w-1)^{2}(x-1)^{2}}{{\sqrt {u}}{\sqrt {v}}wx}}}$ (db) Jones polynomial ${\displaystyle -q^{7/2}+5q^{5/2}-11q^{3/2}+15{\sqrt {q}}-{\frac {22}{\sqrt {q}}}+{\frac {20}{q^{3/2}}}-{\frac {22}{q^{5/2}}}+{\frac {15}{q^{7/2}}}-{\frac {11}{q^{9/2}}}+{\frac {5}{q^{11/2}}}-{\frac {1}{q^{13/2}}}}$ (db) Signature -1 (db) HOMFLY-PT polynomial ${\displaystyle az^{7}-2a^{3}z^{5}+3az^{5}-z^{5}a^{-1}+a^{5}z^{3}-3a^{3}z^{3}+3az^{3}-z^{3}a^{-1}-a^{3}z^{-1}+2az^{-1}-a^{-1}z^{-1}+a^{5}z^{-3}-3a^{3}z^{-3}+3az^{-3}-a^{-1}z^{-3}}$ (db) Kauffman polynomial ${\displaystyle a^{7}z^{5}+5a^{6}z^{6}-4a^{6}z^{4}+11a^{5}z^{7}-17a^{5}z^{5}+8a^{5}z^{3}-a^{5}z^{-3}+a^{5}z^{-1}+11a^{4}z^{8}-12a^{4}z^{6}+3a^{4}z^{-2}-2a^{4}+4a^{3}z^{9}+19a^{3}z^{7}-48a^{3}z^{5}+z^{5}a^{-3}+24a^{3}z^{3}-3a^{3}z^{-3}+a^{3}z+22a^{2}z^{8}-34a^{2}z^{6}+5z^{6}a^{-2}+8a^{2}z^{4}-4z^{4}a^{-2}+6a^{2}z^{-2}-3a^{2}+4az^{9}+19az^{7}+11z^{7}a^{-1}-48az^{5}-17z^{5}a^{-1}+24az^{3}+8z^{3}a^{-1}-3az^{-3}-a^{-1}z^{-3}+az+a^{-1}z^{-1}+11z^{8}-12z^{6}+3z^{-2}-2}$ (db)

### Khovanov Homology

The coefficients of the monomials ${\displaystyle t^{r}q^{j}}$ are shown, along with their alternating sums ${\displaystyle \chi }$ (fixed ${\displaystyle j}$, alternation over ${\displaystyle r}$).
 \ r \ j \
-6-5-4-3-2-101234χ
8          11
6         4 -4
4        71 6
2       84  -4
0      147   7
-2     1012    2
-4    1210     2
-6   714      7
-8  48       -4
-10 17        6
-12 4         -4
-141          1
Integral Khovanov Homology
 ${\displaystyle \dim {\mathcal {G}}_{2r+i}\operatorname {KH} _{\mathbb {Z} }^{r}}$ ${\displaystyle i=-2}$ ${\displaystyle i=0}$ ${\displaystyle r=-6}$ ${\displaystyle {\mathbb {Z} }}$ ${\displaystyle r=-5}$ ${\displaystyle {\mathbb {Z} }^{4}\oplus {\mathbb {Z} }_{2}}$ ${\displaystyle {\mathbb {Z} }}$ ${\displaystyle r=-4}$ ${\displaystyle {\mathbb {Z} }^{7}\oplus {\mathbb {Z} }_{2}^{4}}$ ${\displaystyle {\mathbb {Z} }^{4}}$ ${\displaystyle r=-3}$ ${\displaystyle {\mathbb {Z} }^{8}\oplus {\mathbb {Z} }_{2}^{7}}$ ${\displaystyle {\mathbb {Z} }^{7}}$ ${\displaystyle r=-2}$ ${\displaystyle {\mathbb {Z} }^{14}\oplus {\mathbb {Z} }_{2}^{8}}$ ${\displaystyle {\mathbb {Z} }^{12}}$ ${\displaystyle r=-1}$ ${\displaystyle {\mathbb {Z} }^{10}\oplus {\mathbb {Z} }_{2}^{10}}$ ${\displaystyle {\mathbb {Z} }^{10}}$ ${\displaystyle r=0}$ ${\displaystyle {\mathbb {Z} }^{12}\oplus {\mathbb {Z} }_{2}^{10}}$ ${\displaystyle {\mathbb {Z} }^{14}}$ ${\displaystyle r=1}$ ${\displaystyle {\mathbb {Z} }^{7}\oplus {\mathbb {Z} }_{2}^{8}}$ ${\displaystyle {\mathbb {Z} }^{8}}$ ${\displaystyle r=2}$ ${\displaystyle {\mathbb {Z} }^{4}\oplus {\mathbb {Z} }_{2}^{7}}$ ${\displaystyle {\mathbb {Z} }^{7}}$ ${\displaystyle r=3}$ ${\displaystyle {\mathbb {Z} }\oplus {\mathbb {Z} }_{2}^{4}}$ ${\displaystyle {\mathbb {Z} }^{4}}$ ${\displaystyle r=4}$ ${\displaystyle {\mathbb {Z} }_{2}}$ ${\displaystyle {\mathbb {Z} }}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.