L10n107
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L10n107 is the "Borromean chain mail" link - it contains two L6a4 configurations without any L2a1 configuration (i.e. no two loops are linked). Compare L10a169. |
An indefinitely extended "Borromean chainmail" pattern made up of overlapping L10n107 links; no two circles are directly linked.
Link Presentations
[edit Notes on L10n107's Link Presentations]
| Planar diagram presentation | X6172 X5,12,6,13 X8493 X2,16,3,15 X16,7,17,8 X9,11,10,14 X13,15,14,20 X19,5,20,10 X11,18,12,19 X4,17,1,18 |
| Gauss code | {1, -4, 3, -10}, {-9, 2, -7, 6}, {-2, -1, 5, -3, -6, 8}, {4, -5, 10, 9, -8, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ 0 }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}+\frac{1}{q^{9/2}}-2 q^{7/2}-\frac{2}{q^{7/2}}+q^{5/2}+\frac{1}{q^{5/2}}-2 q^{3/2}-\frac{2}{q^{3/2}}-2 \sqrt{q}-\frac{2}{\sqrt{q}} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^3 z^3+z^3 a^{-3} +a^3 z^{-3} - a^{-3} z^{-3} -2 a^3 z+2 z a^{-3} +a z^5-z^5 a^{-1} +5 a z^3-5 z^3 a^{-1} -3 a z^{-3} +3 a^{-1} z^{-3} +6 a z-6 z a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^2 z^8-z^8 a^{-2} -2 z^8-2 a^3 z^7-4 a z^7-4 z^7 a^{-1} -2 z^7 a^{-3} -a^4 z^6+4 a^2 z^6+4 z^6 a^{-2} -z^6 a^{-4} +10 z^6+10 a^3 z^5+26 a z^5+26 z^5 a^{-1} +10 z^5 a^{-3} +4 a^4 z^4+2 a^2 z^4+2 z^4 a^{-2} +4 z^4 a^{-4} -4 z^4-12 a^3 z^3-44 a z^3-44 z^3 a^{-1} -12 z^3 a^{-3} -2 a^4 z^2-8 a^2 z^2-8 z^2 a^{-2} -2 z^2 a^{-4} -12 z^2+8 a^3 z+24 a z+24 z a^{-1} +8 z a^{-3} +1-3 a z^{-1} -3 a^{-1} z^{-1} +3 a^2 z^{-2} +3 a^{-2} z^{-2} +6 z^{-2} -a^3 z^{-3} -3 a z^{-3} -3 a^{-1} z^{-3} - a^{-3} z^{-3} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|





