L2a1
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L2a1 is [math]\displaystyle{ 2^2_1 }[/math] in Rolfsen's table of links. It is also known as the "Hopf Link". The sheet bend of practical knot tying deforms to the Hopf link. |
expanded Kolam Two-hearts [1] |
|||
Are they forever linked? [2] |
Link Presentations
[edit Notes on L2a1's Link Presentations]
| Planar diagram presentation | X4132 X2314 |
| Gauss code | {1, -2}, {2, -1} |
| A Braid Representative | |||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -1 }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{\sqrt{q}}-\frac{1}{q^{5/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^3 z^{-1} -z a-a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z a^3+a^3 z^{-1} -a^2-z a+a z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|














