5 1: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
Line 6: Line 6:
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 5 |
n = <math>n</math> |
k = 1 |
k = <math>k</math> |
same_alexander = <nowiki>[[0_1]], [[K11n34]], [[K11n42]], </nowiki> |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-2,5,-3,1,-4,2,-5,3/goTop.html |
same_jones = |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
coloured_jones_2 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left(
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
\begin{array}{ccccccccc}
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
q & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
</table> |
0 & 0 & 0 & q^2 & 0 & 0 & 0 & 0 & 0 \\
braid_crossings = 5 |
0 & 0 & 0 & 0 & 0 & 0 & q^3 & 0 & 0 \\
braid_width = 2 |
0 & q^2 & 0 & q-q^3 & 0 & 0 & 0 & 0 & 0 \\
braid_index = 2 |
0 & 0 & 0 & 0 & q^2 & 0 & -(q-1) \left(q^{5/4}+\sqrt[4]{q}\right)^2 & 0 & 0 \\
same_alexander = [[10_132]], |
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^2 & 0 \\
same_jones = [[10_132]], |
0 & 0 & q^3 & 0 & q^{5/2}-q^{7/2} & 0 & (q-1)^2 q (q+1) & 0 & 0 \\
khovanov_table = <table border=1>
0 & 0 & 0 & 0 & 0 & q^2 & 0 & q-q^3 & 0 \\
<tr align=center>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q
<td width=20.%><table cellpadding=0 cellspacing=0>
\end{array}
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
\right),\left(
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
\begin{array}{ccccccccc}
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
\frac{1}{q} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
</table></td>
0 & \frac{q^2-1}{q^3} & 0 & \frac{1}{q^2} & 0 & 0 & 0 & 0 & 0 \\
<td width=10.%>-5</td ><td width=10.%>-4</td ><td width=10.%>-3</td ><td width=10.%>-2</td ><td width=10.%>-1</td ><td width=10.%>0</td ><td width=20.%>&chi;</td></tr>
0 & 0 & \frac{(q-1)^2 (q+1)}{q^4} & 0 & \frac{q-1}{q^{5/2}} & 0 & \frac{1}{q^3} & 0 & 0 \\
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
0 & \frac{1}{q^2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
0 & 0 & \frac{(q-1) (q+1)^2}{q^{9/2}} & 0 & \frac{1}{q^2} & 0 & 0 & 0 & 0 \\
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
0 & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^3} & 0 & \frac{1}{q^2} & 0 \\
<tr align=center><td>-9</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
0 & 0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 \\
<tr align=center><td>-11</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
0 & 0 & 0 & 0 & 0 & \frac{1}{q^2} & 0 & 0 & 0 \\
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q}
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
\end{array}
</table> |
\right),\left(
coloured_jones_2 = <math> q^{-4} + q^{-7} - q^{-9} + q^{-10} - q^{-12} + q^{-13} -2 q^{-15} + q^{-16} - q^{-18} + q^{-19} </math> |
\begin{array}{ccc}
coloured_jones_3 = <math> q^{-6} + q^{-10} - q^{-13} + q^{-14} - q^{-17} + q^{-18} - q^{-21} - q^{-25} + q^{-27} - q^{-29} + q^{-31} + q^{-35} - q^{-36} </math> |
0 & 0 & \frac{1}{\sqrt{q}} \\
coloured_jones_4 = <math> q^{-8} + q^{-13} - q^{-17} + q^{-18} - q^{-22} + q^{-23} - q^{-27} + q^{-28} - q^{-29} - q^{-32} + q^{-33} - q^{-34} + q^{-36} - q^{-37} + q^{-38} - q^{-39} + q^{-41} - q^{-42} + q^{-43} - q^{-44} + q^{-45} + q^{-46} - q^{-47} + q^{-48} - q^{-49} + q^{-51} - q^{-52} + q^{-53} - q^{-54} - q^{-57} + q^{-58} </math> |
0 & 1 & 0 \\
coloured_jones_5 = <math> q^{-10} + q^{-16} - q^{-21} + q^{-22} - q^{-27} + q^{-28} - q^{-33} + q^{-34} - q^{-36} - q^{-39} + q^{-40} - q^{-42} + q^{-46} - q^{-48} + q^{-52} - q^{-54} + q^{-57} + q^{-58} - q^{-60} + q^{-63} - q^{-66} + q^{-69} - q^{-72} - q^{-73} + q^{-75} - q^{-79} + q^{-81} + q^{-84} - q^{-85} </math> |
\sqrt{q} & 0 & 0
coloured_jones_6 = <math> q^{-12} + q^{-19} - q^{-25} + q^{-26} - q^{-32} + q^{-33} - q^{-39} + q^{-40} - q^{-43} - q^{-46} + q^{-47} - q^{-50} - q^{-53} +2 q^{-54} - q^{-57} - q^{-60} +2 q^{-61} - q^{-64} - q^{-67} +2 q^{-68} + q^{-69} - q^{-71} - q^{-74} +2 q^{-75} + q^{-76} -2 q^{-78} - q^{-81} +2 q^{-82} + q^{-83} -2 q^{-85} - q^{-88} +2 q^{-89} -2 q^{-92} - q^{-95} +2 q^{-96} + q^{-97} -2 q^{-99} - q^{-102} +2 q^{-103} + q^{-104} - q^{-106} - q^{-109} +2 q^{-110} - q^{-113} - q^{-116} + q^{-117} </math> |
\end{array}
coloured_jones_7 = <math> q^{-14} + q^{-22} - q^{-29} + q^{-30} - q^{-37} + q^{-38} - q^{-45} + q^{-46} - q^{-50} - q^{-53} + q^{-54} - q^{-58} - q^{-61} + q^{-62} + q^{-63} - q^{-66} - q^{-69} + q^{-70} + q^{-71} - q^{-74} - q^{-77} + q^{-78} + q^{-79} + q^{-81} - q^{-82} - q^{-85} + q^{-86} + q^{-87} + q^{-89} - q^{-90} - q^{-92} - q^{-93} + q^{-94} + q^{-95} + q^{-97} - q^{-98} - q^{-100} - q^{-101} + q^{-102} + q^{-103} + q^{-105} - q^{-106} - q^{-107} - q^{-108} - q^{-109} + q^{-110} + q^{-111} + q^{-113} - q^{-114} - q^{-115} - q^{-117} + q^{-118} + q^{-119} + q^{-121} - q^{-122} - q^{-123} - q^{-125} + q^{-126} + q^{-127} + q^{-128} + q^{-129} - q^{-130} - q^{-131} - q^{-133} + q^{-134} + q^{-136} + q^{-137} - q^{-138} - q^{-139} - q^{-141} + q^{-142} + q^{-145} - q^{-146} - q^{-147} + q^{-150} + q^{-153} - q^{-154} </math> |
\right),\left(
computer_talk =
\begin{array}{ccc}
<table>
0 & 0 & \frac{1}{\sqrt{q}} \\
<tr valign=top>
0 & 1 & 0 \\
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
\sqrt{q} & 0 & 0
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
\end{array}
</tr>
\right),\left(
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
\begin{array}{ccc}
</table>
0 & 0 & \frac{1}{\sqrt{q}} \\
<table><tr align=left>
0 & 1 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
\sqrt{q} & 0 & 0
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[5, 1]]</nowiki></code></td></tr>
\end{array}
<tr align=left>
\right),\left(
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
\begin{array}{ccc}
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 10, 6, 1], X[7, 2, 8, 3],
0 & 0 & \frac{1}{\sqrt{q}} \\
0 & 1 & 0 \\
X[9, 4, 10, 5]]</nowiki></code></td></tr>
\sqrt{q} & 0 & 0
</table>
\end{array}
<table><tr align=left>
\right)\right)\right]}{q+\frac{1}{q}+1}\right]</math> |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
coloured_jones_3 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left(
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[5, 1]]</nowiki></code></td></tr>
\begin{array}{cccccccccccccccc}
<tr align=left>
q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
0 & 0 & 0 & 0 & q^3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -2, 5, -3, 1, -4, 2, -5, 3]</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
</table>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 \\
<table><tr align=left>
0 & q^3 & 0 & 0 & q^{3/2}-q^{9/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
0 & 0 & 0 & 0 & 0 & q^{7/2} & 0 & 0 & -q^{3/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[5, 1]]</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & -(q-1) q^{3/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 \\
<tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
0 & 0 & q^{9/2} & 0 & 0 & q^{7/2}-q^{11/2} & 0 & 0 & q^{13/2}-q^{9/2}-q^{7/2}+q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 10, 2, 4]</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & -(q-1) q^{5/2} (q+1)^2 & 0 & 0 & (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 \\
</table>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2} & 0 & 0 & -q^{3/2} (q+1) \left(q^3-1\right) & 0 & 0 \\
<table><tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^3 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
0 & 0 & 0 & q^6 & 0 & 0 & q^{11/2}-q^{13/2} & 0 & 0 & (q-1)^2 q^4 (q+1) & 0 & 0 & -(q-1)^3 q^{3/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[5, 1]]</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} & 0 & 0 & q^{7/2}-q^{11/2} & 0 & 0 & q^{13/2}-q^{9/2}-q^{7/2}+q^{3/2} & 0 & 0 \\
<tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^3 & 0 & 0 & q^{3/2}-q^{9/2} & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{3/2}
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[2, {-1, -1, -1, -1, -1}]</nowiki></code></td></tr>
\end{array}
</table>
\right),\left(
<table><tr align=left>
\begin{array}{cccccccccccccccc}
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
\frac{1}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
0 & \frac{q^3-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<tr align=left>
0 & 0 & \frac{q^5-q^3-q^2+1}{q^{13/2}} & 0 & 0 & \frac{q^2-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{15/2}} & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^5} & 0 & 0 & \frac{q-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, 5}</nowiki></code></td></tr>
0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
</table>
0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{13/2}} & 0 & 0 & \frac{1}{q^{7/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<table><tr align=left>
0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^9} & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{11/2}} & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{13/2}} & 0 & 0 & \frac{q^2-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[5, 1]]</nowiki></code></td></tr>
0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<tr align=left>
0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{17/2}} & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{13/2}} & 0 & 0 & \frac{1}{q^{7/2}} & 0 & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^3} & 0 \\
</table>
0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<table><tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[5, 1]]]</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/2}}
<tr align=left><td></td><td>[[Image:5_1_ML.gif]]</td></tr><tr align=left>
\end{array}
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
\right),\left(
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
\begin{array}{cccc}
</table>
0 & 0 & 0 & \frac{1}{q^{3/4}} \\
<table><tr align=left>
0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
0 & \sqrt[4]{q} & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[5, 1]]&) /@ {
q^{3/4} & 0 & 0 & 0
SymmetryType, UnknottingNumber, ThreeGenus,
\end{array}
BridgeIndex, SuperBridgeIndex, NakanishiIndex
\right),\left(
}</nowiki></code></td></tr>
\begin{array}{cccc}
<tr align=left>
0 & 0 & 0 & \frac{1}{q^{3/4}} \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 2, 3, 1}</nowiki></code></td></tr>
0 & \sqrt[4]{q} & 0 & 0 \\
</table>
q^{3/4} & 0 & 0 & 0
<table><tr align=left>
\end{array}
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
\right),\left(
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[5, 1]][t]</nowiki></code></td></tr>
\begin{array}{cccc}
<tr align=left>
0 & 0 & 0 & \frac{1}{q^{3/4}} \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 1 2
1 + t - - - t + t
0 & \sqrt[4]{q} & 0 & 0 \\
q^{3/4} & 0 & 0 & 0
t</nowiki></code></td></tr>
\end{array}
</table>
\right),\left(
<table><tr align=left>
\begin{array}{cccc}
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
0 & 0 & 0 & \frac{1}{q^{3/4}} \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[5, 1]][z]</nowiki></code></td></tr>
0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\
<tr align=left>
0 & \sqrt[4]{q} & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
q^{3/4} & 0 & 0 & 0
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
\end{array}
1 + 3 z + z</nowiki></code></td></tr>
\right)\right)\right]}{q^{3/2}+\sqrt{q}+\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}}\right]</math> |
</table>
coloured_jones_4 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left(
<table><tr align=left>
\begin{array}{ccccccccccccccccccccccccc}
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
q^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 \\
</table>
0 & q^4 & 0 & 0 & 0 & q^2-q^6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<table><tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & -q^{15/2}-q^{13/2}+q^{7/2}+q^{5/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^3 \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[5, 1]], KnotSignature[Knot[5, 1]]}</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 & 0 & 0 & -(q-1) q^{7/2} \left(q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 \\
<tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
0 & 0 & q^6 & 0 & 0 & 0 & q^{9/2}-q^{15/2} & 0 & 0 & 0 & q^9-q^6-q^5+q^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, -4}</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^4 (q+1) \left(q^3-1\right) & 0 & 0 & 0 & q \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
</table>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -(q-1) q^{7/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 & (q+1) \left(q^5+q^3-q^2-1\right)^2 & 0 & 0 & 0 & 0 \\
<table><tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^3 \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[5, 1]][q]</nowiki></code></td></tr>
0 & 0 & 0 & q^8 & 0 & 0 & 0 & q^7-q^9 & 0 & 0 & 0 & q^{10}-q^8-q^7+q^5 & 0 & 0 & 0 & -(q-1)^3 q^2 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 & 0 & 0 & -(q-1) q^{11/2} (q+1)^2 & 0 & 0 & 0 & q^3 (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 & -\frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{\sqrt{q}} & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^4 (q+1) \left(q^3-1\right) & 0 & 0 & 0 & q \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 -6 -5 -4 -2
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & -q^{15/2}-q^{13/2}+q^{7/2}+q^{5/2} & 0 & 0 \\
-q + q - q + q + q</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 \\
</table>
0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & q^{19/2}-q^{21/2} & 0 & 0 & 0 & (q-1)^2 q^8 (q+1) & 0 & 0 & 0 & -(q-1)^3 q^{11/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 & (q-1)^4 q^2 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 \\
<table><tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & q^7-q^9 & 0 & 0 & 0 & q^{10}-q^8-q^7+q^5 & 0 & 0 & 0 & -(q-1)^3 q^2 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & q^{9/2}-q^{15/2} & 0 & 0 & 0 & q^9-q^6-q^5+q^2 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & 0 & q^2-q^6 & 0 \\
<tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
\end{array}
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki></code></td></tr>
\right),\left(
</table>
\begin{array}{ccccccccccccccccccccccccc}
<table><tr align=left>
\frac{1}{q^2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
0 & \frac{q^4-1}{q^6} & 0 & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[5, 1]][q]</nowiki></code></td></tr>
0 & 0 & \frac{q^7-q^4-q^3+1}{q^9} & 0 & 0 & 0 & \frac{q^3-1}{q^{13/2}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<tr align=left>
0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{11}} & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^8} & 0 & 0 & 0 & \frac{q^2-1}{q^7} & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{12}} & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{17/2}} & 0 & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^7} & 0 & 0 & 0 & \frac{q-1}{q^{15/2}} & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -22 -20 -18 -14 -12 2 -8 -6
-q - q - q + q + q + --- + q + q
0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
10
0 & 0 & \frac{q^5+q^4-q-1}{q^{17/2}} & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{12}} & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^8} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
q</nowiki></code></td></tr>
0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{q^{29/2}} & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^{10}} & 0 & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{15/2}} & 0 & 0 & 0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
</table>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{11}} & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^8} & 0 & 0 & 0 & \frac{q^2-1}{q^7} & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 \\
<table><tr align=left>
0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{11}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[5, 1]][a, z]</nowiki></code></td></tr>
0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5+q^3-q^2-1\right)^2}{q^{15}} & 0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{19/2}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{12}} & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^8} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^9} & 0 & 0 & 0 & \frac{q^3-1}{q^{13/2}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 \\
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 4 2 6 2 4 4
0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 a - 2 a + 4 a z - a z + a z</nowiki></code></td></tr>
0 & 0 & 0 & 0 & \frac{(q-1) \left(q^3+q^2+q+1\right)^2}{q^{27/2}} & 0 & 0 & 0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
</table>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{11}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<table><tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{17/2}} & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^6} & 0 & 0 & 0 & \frac{1}{q^4} & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[5, 1]][a, z]</nowiki></code></td></tr>
0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<tr align=left>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 5 7 9 4 2 6 2 8 2
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 a + 2 a - 2 a z - a z + a z - 4 a z - 3 a z + a z +
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^2}
\end{array}
5 3 7 3 4 4 6 4
\right),\left(
a z + a z + a z + a z</nowiki></code></td></tr>
\begin{array}{ccccc}
</table>
0 & 0 & 0 & 0 & \frac{1}{q} \\
<table><tr align=left>
0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
0 & 0 & 1 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[5, 1]], Vassiliev[3][Knot[5, 1]]}</nowiki></code></td></tr>
0 & \sqrt{q} & 0 & 0 & 0 \\
<tr align=left>
q & 0 & 0 & 0 & 0
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
\end{array}
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, -5}</nowiki></code></td></tr>
\right),\left(
</table>
\begin{array}{ccccc}
<table><tr align=left>
0 & 0 & 0 & 0 & \frac{1}{q} \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[5, 1]][q, t]</nowiki></code></td></tr>
0 & 0 & 1 & 0 & 0 \\
<tr align=left>
0 & \sqrt{q} & 0 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
q & 0 & 0 & 0 & 0
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 -3 1 1 1 1
\end{array}
q + q + ------ + ------ + ------ + -----
\right),\left(
15 5 11 4 11 3 7 2
\begin{array}{ccccc}
q t q t q t q t</nowiki></code></td></tr>
0 & 0 & 0 & 0 & \frac{1}{q} \\
</table>
0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\
<table><tr align=left>
0 & 0 & 1 & 0 & 0 \\
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
0 & \sqrt{q} & 0 & 0 & 0 \\
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[5, 1], 2][q]</nowiki></code></td></tr>
q & 0 & 0 & 0 & 0
<tr align=left>
\end{array}
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
\right),\left(
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -19 -18 -16 2 -13 -12 -10 -9 -7 -4
\begin{array}{ccccc}
q - q + q - --- + q - q + q - q + q + q
15
0 & 0 & 0 & 0 & \frac{1}{q} \\
0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\
q</nowiki></code></td></tr>
0 & 0 & 1 & 0 & 0 \\
</table> }}
0 & \sqrt{q} & 0 & 0 & 0 \\
q & 0 & 0 & 0 & 0
\end{array}
\right)\right)\right]}{q^2+q+1+\frac{1}{q}+\frac{1}{q^2}}\right]</math> |
coloured_jones_5 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left(
\begin{array}{cccccccccccccccccccccccccccccccccccc}
q^{5/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 \\
0 & q^5 & 0 & 0 & 0 & 0 & q^{5/2}-q^{15/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{13/2} & 0 & 0 & 0 & 0 & -q^{7/2} (q+1) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{9/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{11} & 0 & 0 & 0 & 0 & -(q-1) q^{13/2} \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 \\
0 & 0 & q^{15/2} & 0 & 0 & 0 & 0 & q^{11/2}-q^{19/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{15/2}-q^{13/2}+q^{5/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{21/2}-q^{19/2}+q^{13/2}+q^{11/2} & 0 & 0 & 0 & 0 & (q-1)^2 q^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & (q-1)^2 q^{3/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 & 0 & 0 & -(q-1) q^{11/2} \left(q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & q (q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 \\
0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & q^{17/2}-q^{23/2} & 0 & 0 & 0 & 0 & q^{13}-q^{10}-q^9+q^6 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{15/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & q^{9/2} \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & -(q-1)^3 \left(q^2+q+1\right) \left(q^{13/4}+q^{9/4}+q^{5/4}+\sqrt[4]{q}\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 & 0 & 0 & -(q-1) q^{13/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & q^3 (q+1) \left(q^5+q^3-q^2-1\right)^2 & 0 & 0 & 0 & 0 & -\frac{(q-1)^3 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & (q-1)^2 q^{3/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{9/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} & 0 & 0 \\
0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{27/2} & 0 & 0 & 0 & 0 & q^{29/2}-q^{25/2}-q^{23/2}+q^{19/2} & 0 & 0 & 0 & 0 & -(q-1)^3 q^{13/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & (q-1)^4 q^{5/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{11} & 0 & 0 & 0 & 0 & -(q-1) q^{19/2} (q+1)^2 & 0 & 0 & 0 & 0 & q^7 (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 & 0 & -q^{7/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{15/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & q^{9/2} \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & -(q-1)^3 \left(q^2+q+1\right) \left(q^{13/4}+q^{9/4}+q^{5/4}+\sqrt[4]{q}\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{21/2}-q^{19/2}+q^{13/2}+q^{11/2} & 0 & 0 & 0 & 0 & (q-1)^2 q^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{13/2} & 0 & 0 & 0 & 0 & -q^{7/2} (q+1) \left(q^5-1\right) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 \\
0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & q^{29/2}-q^{31/2} & 0 & 0 & 0 & 0 & (q-1)^2 q^{13} (q+1) & 0 & 0 & 0 & 0 & -(q-1)^3 q^{21/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & (q-1)^4 q^7 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & -(q-1)^5 q^{5/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{27/2} & 0 & 0 & 0 & 0 & q^{29/2}-q^{25/2}-q^{23/2}+q^{19/2} & 0 & 0 & 0 & 0 & -(q-1)^3 q^{13/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & (q-1)^4 q^{5/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & q^{17/2}-q^{23/2} & 0 & 0 & 0 & 0 & q^{13}-q^{10}-q^9+q^6 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} & 0 & 0 & 0 & 0 & q^{11/2}-q^{19/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{15/2}-q^{13/2}+q^{5/2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & 0 & q^{5/2}-q^{15/2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{5/2}
\end{array}
\right),\left(
\begin{array}{cccccccccccccccccccccccccccccccccccc}
\frac{1}{q^{5/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{q^5-1}{q^{15/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{q^9-q^5-q^4+1}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{17/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{29/2}} & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{11}} & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{19/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{35/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{13}} & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^{10}} & 0 & 0 & 0 & 0 & \frac{q-1}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{13/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{21}} & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{q^{31/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^{12}} & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{17/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{45/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5+q^3-q^2-1\right)^2}{q^{16}} & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{29/2}} & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{11}} & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{19/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2}{q^{22}} & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^3+q^2+q+1\right)^2}{q^{29/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{17/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{17/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^4+q^3+q^2+q+1\right)^2}{q^{39/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{13/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-1}{q^{15/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^5} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/2}}
\end{array}
\right),\left(
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\
0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\
0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\
0 & q^{3/4} & 0 & 0 & 0 & 0 \\
q^{5/4} & 0 & 0 & 0 & 0 & 0
\end{array}
\right),\left(
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\
0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\
0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\
0 & q^{3/4} & 0 & 0 & 0 & 0 \\
q^{5/4} & 0 & 0 & 0 & 0 & 0
\end{array}
\right),\left(
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\
0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\
0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\
0 & q^{3/4} & 0 & 0 & 0 & 0 \\
q^{5/4} & 0 & 0 & 0 & 0 & 0
\end{array}
\right),\left(
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\
0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\
0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\
0 & q^{3/4} & 0 & 0 & 0 & 0 \\
q^{5/4} & 0 & 0 & 0 & 0 & 0
\end{array}
\right)\right)\right]}{q^{5/2}+q^{3/2}+\sqrt{q}+\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}+\frac{1}{q^{5/2}}}\right]</math> |
coloured_jones_6 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left(
\begin{array}{ccccccccccccccccccccccccccccccccccccccccccccccccc}
q^3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & q^6 & 0 & 0 & 0 & 0 & 0 & q^3-q^9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & 0 & -q^{23/2}-q^{21/2}+q^{11/2}+q^{9/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & 0 & -q^6 \left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & -q^9 \left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{16} & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{21/2} \left(q^5+q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & q^9 & 0 & 0 & 0 & 0 & 0 & q^{13/2}-q^{23/2} & 0 & 0 & 0 & 0 & 0 & q^{14}-q^9-q^8+q^3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & 0 & -q^7 (q+1) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{11} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^8 \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{13} & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{17/2} \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & q^3 (q+1) \left(q^9+q^7+q^5-q^4-q^2-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & -q^9 \left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & q^{10}-q^{14} & 0 & 0 & 0 & 0 & 0 & q^{16}-q^{12}-q^{11}+q^7 & 0 & 0 & 0 & 0 & 0 & -q^3 \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^{29/2}-q^{27/2}+q^{21/2}+q^{19/2} & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^6 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -q^{3/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^9 \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^5 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{17/2} \left(q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & q^4 (q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2 & 0 & 0 & 0 & 0 & 0 & -\frac{\left(q^2-1\right)^3 \left(q^2+q+1\right) \left(q^8+2 q^6+q^5+2 q^4+q^3+2 q^2+1\right)^2}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^8 \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & q^{27/2}-q^{33/2} & 0 & 0 & 0 & 0 & 0 & q^{18}-q^{15}-q^{14}+q^{11} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & -q^{12} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & 0 & q^9 \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^5 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{13} & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{21/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & q^7 (q+1) \left(q^5+q^3-q^2-1\right)^2 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{5/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^9 \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^5 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{11} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & 0 & -q^6 \left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 & q^{17}-q^{19} & 0 & 0 & 0 & 0 & 0 & q^{20}-q^{18}-q^{17}+q^{15} & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{12} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^8 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^3 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{16} & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{29/2} (q+1)^2 & 0 & 0 & 0 & 0 & 0 & q^{12} (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 & 0 & 0 & -q^{17/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & -\frac{(q-1)^5 (q+1)^4 \left(q^2+1\right) \left(q^2-q+1\right)^2 \left(q^2+q+1\right)^3 \left(q^4+q^3+q^2+q+1\right)}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & -q^{12} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & 0 & q^9 \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^5 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^{29/2}-q^{27/2}+q^{21/2}+q^{19/2} & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^6 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -q^{3/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & 0 & -q^7 (q+1) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & 0 & -q^{23/2}-q^{21/2}+q^{11/2}+q^{9/2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 & q^{41/2}-q^{43/2} & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{19} (q+1) & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{33/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{13} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^{17/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^6 q^3 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 & q^{17}-q^{19} & 0 & 0 & 0 & 0 & 0 & q^{20}-q^{18}-q^{17}+q^{15} & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{12} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^8 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^3 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & q^{27/2}-q^{33/2} & 0 & 0 & 0 & 0 & 0 & q^{18}-q^{15}-q^{14}+q^{11} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & q^{10}-q^{14} & 0 & 0 & 0 & 0 & 0 & q^{16}-q^{12}-q^{11}+q^7 & 0 & 0 & 0 & 0 & 0 & -q^3 \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 & 0 & 0 & 0 & q^{13/2}-q^{23/2} & 0 & 0 & 0 & 0 & 0 & q^{14}-q^9-q^8+q^3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & 0 & 0 & q^3-q^9 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^3
\end{array}
\right),\left(
\begin{array}{ccccccccccccccccccccccccccccccccccccccccccccccccc}
\frac{1}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{q^6-1}{q^9} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{q^{11}-q^6-q^5+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5-1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{21}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^6 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{24}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q-1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{q^7+q^6-q-1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{13}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{17}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{26}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^4 \left(q^2+1\right) \left(q^2-q+1\right)^2 \left(q^2+q+1\right)^3 \left(q^4+q^3+q^2+q+1\right)}{q^{57/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{22}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{16}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{22}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{27}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{31}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{47/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5+q^3-q^2-1\right)^2}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{13}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{26}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{21}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2 \left(q^2+1\right) \left(q^4+q^2+1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)}{q^{26}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+q+1\right) \left(q^8+2 q^6+q^5+2 q^4+q^3+2 q^2+1\right)^2}{q^{63/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2}{q^{23}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^3+q^2+q+1\right)^2}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{27}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{17}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^9+q^7+q^5-q^4-q^2-1\right)^2}{q^{30}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^4+q^3+q^2+q+1\right)^2}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{13}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)}{q^{26}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{22}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{13}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^{11}-q^6-q^5+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5-1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^5+q^4+q^3+q^2+q+1\right)^2}{q^{53/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{16}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2 \left(q^2+1\right) \left(q^4+q^2+1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7+q^6-q-1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^6-1}{q^9} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^6} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^3}
\end{array}
\right),\left(
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/2}} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{q} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & \sqrt{q} & 0 & 0 & 0 & 0 \\
0 & q & 0 & 0 & 0 & 0 & 0 \\
q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\right),\left(
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/2}} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{q} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & \sqrt{q} & 0 & 0 & 0 & 0 \\
0 & q & 0 & 0 & 0 & 0 & 0 \\
q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\right),\left(
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/2}} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{q} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & \sqrt{q} & 0 & 0 & 0 & 0 \\
0 & q & 0 & 0 & 0 & 0 & 0 \\
q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\right),\left(
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/2}} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{q} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & \sqrt{q} & 0 & 0 & 0 & 0 \\
0 & q & 0 & 0 & 0 & 0 & 0 \\
q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\right)\right)\right]}{q^3+q^2+q+1+\frac{1}{q}+\frac{1}{q^2}+\frac{1}{q^3}}\right]</math> |
coloured_jones_7 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left(
\begin{array}{cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc}
q^{7/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{35/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{49/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{28} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & q^7 & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2}-q^{21/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{11/2} (q+1) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{19/2} \left(q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^4+q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{22} & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{q^{31/2} \left(q^7-1\right)^2}{q-1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{49/2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & q^{21/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2}-q^{27/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2}-q^{21/2}-q^{19/2}+q^{7/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{31/2}-q^{29/2}+q^{19/2}+q^{17/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^4 \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{27/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{19/2} \left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{21/2} \left(q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^5 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right) \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{11/2} (q+1) \left(q^4+q^2+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{25/2} \left(q^5+q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 (q+1) \left(q^4+q^2+1\right)^2 \left(q^7-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & 0 & q^{23/2}-q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{19}-q^{14}-q^{13}+q^8 & 0 & 0 & 0 & 0 & 0 & 0 & -q^{43/2}+q^{33/2}+q^{31/2}+q^{29/2}-q^{21/2}-q^{19/2}-q^{17/2}+q^{7/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} (q+1) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^7 \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{3/2} \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{31/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{13/2} \left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 \sqrt{q} \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{16} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{23/2} \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 (q+1) \left(q^9+q^7+q^5-q^4-q^2-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{(q-1)^3 (q+1) \left(q^2-q+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{\sqrt{q}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{11/2} (q+1) \left(q^4+q^2+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^4+q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{35/2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & q^{35/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{31/2}-q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{43/2}-q^{35/2}-q^{33/2}+q^{25/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{17/2} \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2} \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{39/2}-q^{37/2}+q^{31/2}+q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{11} \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{13/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q \left(q^3+q^2+q+1\right) \left(q^5-1\right)^2 \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{19/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{9/2} (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{16} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{25/2} \left(q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 (q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^2-1\right)^3 \left(q^2+q+1\right) \left(q^8+2 q^6+q^5+2 q^4+q^3+2 q^2+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{31/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{13/2} \left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 \sqrt{q} \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{21/2} \left(q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^5 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right) \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{19/2} \left(q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2}-q^{45/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{24}-q^{21}-q^{20}+q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^9 \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{7/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{35/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{21/2} \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{11/2} (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{q^3 \left(q^{3/2}-\frac{1}{q^{3/2}}\right) \left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)^2 \left(q^7-1\right)}{q-1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{31/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} (q+1) \left(q^5+q^3-q^2-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{15/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^2 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{(q-1)^5 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^{9/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{19/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{9/2} (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^7 \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{3/2} \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{27/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{19/2} \left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21/2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & q^{49/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{47/2} \left(q^2-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{53/2}-q^{49/2}-q^{47/2}+q^{43/2} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{37/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{29/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^{19/2} (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^3 q^{7/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{22} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{41/2} (q+1)^2 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -q^{29/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{10} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^{9/2} (q+1)^4 \left(q^2+1\right) \left(q^2-q+1\right)^2 \left(q^2+q+1\right)^3 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^6 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{35/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{21/2} \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{11/2} (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{q^3 \left(q^{3/2}-\frac{1}{q^{3/2}}\right) \left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)^2 \left(q^7-1\right)}{q-1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{39/2}-q^{37/2}+q^{31/2}+q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{11} \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{13/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q \left(q^3+q^2+q+1\right) \left(q^5-1\right)^2 \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} (q+1) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{31/2}-q^{29/2}+q^{19/2}+q^{17/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^4 \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{11/2} (q+1) \left(q^7-1\right) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{28} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{55/2} & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{26} (q+1) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{47/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{20} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^{31/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^6 q^{10} (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^7 q^{7/2} (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{49/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{47/2} \left(q^2-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{53/2}-q^{49/2}-q^{47/2}+q^{43/2} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{37/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{29/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^{19/2} (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^3 q^{7/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2}-q^{45/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{24}-q^{21}-q^{20}+q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^9 \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{7/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{35/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{31/2}-q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{43/2}-q^{35/2}-q^{33/2}+q^{25/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{17/2} \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2} \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & 0 & q^{23/2}-q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{19}-q^{14}-q^{13}+q^8 & 0 & 0 & 0 & 0 & 0 & 0 & -q^{43/2}+q^{33/2}+q^{31/2}+q^{29/2}-q^{21/2}-q^{19/2}-q^{17/2}+q^{7/2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2}-q^{27/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2}-q^{21/2}-q^{19/2}+q^{7/2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2}-q^{21/2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2}
\end{array}
\right),\left(
\begin{array}{cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc}
\frac{1}{q^{7/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{q^7-1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{q^{13}-q^7-q^6+1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^6-1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{43/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^{11}-q^6-q^5+1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{47/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{57/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right) \left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{61/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^7 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{63/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^6 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{25}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^{19}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q-1}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{28}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{(q+1) \left(q^7-1\right)}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7+q^6-q-1}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{(q-1) q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right)^2 \left(q^6-1\right) \left(q^7-1\right)}{(q-1) q^{29}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^{3/2}-\frac{1}{q^{3/2}}\right) \left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)^2 \left(q^7-1\right)}{(q-1) q^{31}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{55/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^6 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^{37}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^4 \left(q^2+1\right) \left(q^2-q+1\right)^2 \left(q^2+q+1\right)^3 \left(q^4+q^3+q^2+q+1\right)}{q^{59/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{24}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^{19}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{22}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right) \left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{61/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^7-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{51/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{63/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{24}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{73/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{57/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^{81/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{32}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{51/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5+q^3-q^2-1\right)^2}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^{3/2}-\frac{1}{q^{3/2}}\right) \left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)^2 \left(q^7-1\right)}{(q-1) q^{31}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{55/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{57/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right) \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{30}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2 \left(q^2+1\right) \left(q^4+q^2+1\right)}{q^{43/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{73/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)}{q^{55/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^{42}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+q+1\right) \left(q^8+2 q^6+q^5+2 q^4+q^3+2 q^2+1\right)^2}{q^{65/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2}{q^{25}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^3+q^2+q+1\right)^2}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{16}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{73/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{57/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right)^2 \left(q^6-1\right) \left(q^7-1\right)}{(q-1) q^{29}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{47/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{35/2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{53/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^4+q^2+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{69/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2-q+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^{83/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^9+q^7+q^5-q^4-q^2-1\right)^2}{q^{31}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^4+q^3+q^2+q+1\right)^2}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{16}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{73/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)}{q^{55/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{63/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{24}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{(q-1) q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{43/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^{11}-q^6-q^5+1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^5+q^4+q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{61/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^4+q^2+1\right)^2 \left(q^7-1\right)^2}{q^{39}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^5+q^4+q^3+q^2+q+1\right)^2}{q^{55/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^4+q^2+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{69/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right) \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{30}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2 \left(q^2+1\right) \left(q^4+q^2+1\right)}{q^{43/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{51/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7+q^6-q-1}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^{13}-q^7-q^6+1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^6-1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21/2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^7-1\right)^2}{(q-1) q^{69/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{22}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^5+q^4+q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{61/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{53/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^7-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^7-1\right)}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7-1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^7} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{28}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{7/2}}
\end{array}
\right),\left(
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{7/4}} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 & 0 \\
0 & 0 & q^{3/4} & 0 & 0 & 0 & 0 & 0 \\
0 & q^{5/4} & 0 & 0 & 0 & 0 & 0 & 0 \\
q^{7/4} & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\right),\left(
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{7/4}} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 & 0 \\
0 & 0 & q^{3/4} & 0 & 0 & 0 & 0 & 0 \\
0 & q^{5/4} & 0 & 0 & 0 & 0 & 0 & 0 \\
q^{7/4} & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\right),\left(
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{7/4}} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 & 0 \\
0 & 0 & q^{3/4} & 0 & 0 & 0 & 0 & 0 \\
0 & q^{5/4} & 0 & 0 & 0 & 0 & 0 & 0 \\
q^{7/4} & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\right),\left(
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{7/4}} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 & 0 \\
0 & 0 & q^{3/4} & 0 & 0 & 0 & 0 & 0 \\
0 & q^{5/4} & 0 & 0 & 0 & 0 & 0 & 0 \\
q^{7/4} & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\right)\right)\right]}{q^{7/2}+q^{5/2}+q^{3/2}+\sqrt{q}+\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}+\frac{1}{q^{5/2}}+\frac{1}{q^{7/2}}}\right]</math>
}}

Revision as of 04:11, 3 March 2013

4 1.gif

4_1

5 2.gif

5_2

5 1.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit &id= 5 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 5 1 at Knotilus!

An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]), as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2).

When taken off the post the strangle knot (hitch) of practical knot tying deforms to 5_1


A kolam of a 2x3 dot array
The VISA Interlink Logo [1]
Version of the US bicentennial emblem
A pentagonal table by Bob Mackay [2]
The Utah State Parks logo
As impossible object ("Penrose" pentagram)
Folded ribbon which is single-sided (more complex version of Möbius Strip).
Non-pentagonal shape.
Pentagram of circles.
Alternate pentagram of intersecting circles.
3D-looking rendition.
Partial view of US bicentennial logo on a shirt seen in Lisboa [3]
Non-prime knot with two 5_1 configurations on a closed loop.
Knotted epitrochoid
Sum of two 5_1s, Vienna, orthodox church

This sentence was last edited by Dror. Sometime later, Scott added this sentence.

Knot presentations

Planar diagram presentation X1627 X3849 X5,10,6,1 X7283 X9,4,10,5
Gauss code -1, 4, -2, 5, -3, 1, -4, 2, -5, 3
Dowker-Thistlethwaite code 6 8 10 2 4
Conway Notation [5]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif

Length is 5, width is 2,

Braid index is 2

5 1 ML.gif 5 1 AP.gif
[{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}]

[edit Notes on presentations of 5 1]

Knot 5_1.
A graph, knot 5_1.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index 3
Nakanishi index 1
Maximal Thurston-Bennequin number [-10][3]
Hyperbolic Volume Not hyperbolic
A-Polynomial See Data:5 1/A-polynomial

[edit Notes for 5 1's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 5 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {[[0_1]], [[K11n34]], [[K11n42]], }

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (3, -5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 5 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10χ
-3     11
-5     11
-7   1  1
-9      0
-11 11   0
-13      0
-151     -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials