T(5,4): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
"<!-- Script generated - do not edit! -->\n\n<!-- TorusKnot[5, 4] \
<!-- Script generated - do not edit! -->

-->\n\n<span \
<!-- TorusKnot[5, 4] -->
id=\"top\"></span>\n\n{{TorusKnotsNavigation|T(7,3)|T(15,2)}}\\

n\n{{:Further T(5,4) views}}\n\n[[Planar Diagrams|Planar Diagram]]: X[17, 25, 18, 24] X[10, 26, 11, 25] X[3, 27, 4, 26] X[11, 19, 12, 18] X[4,\
<span id="top"></span>

{{TorusKnotsNavigation|T(7,3)|T(15,2)}}

{{:Further T(5,4) views}}

[[Planar Diagrams|Planar Diagram]]: X[17, 25, 18, 24] X[10, 26, 11, 25] X[3, 27, 4, 26] X[11, 19, 12, 18] X[4,\
20, 5, 19] X[27, 21, 28, 20] X[5, 13, 6, 12] X[28, 14, 29, 13] X[21, 15,\
20, 5, 19] X[27, 21, 28, 20] X[5, 13, 6, 12] X[28, 14, 29, 13] X[21, 15,\
Line 8: Line 15:
22, 14] X[29, 7, 30, 6] X[22, 8, 23, 7] X[15, 9, 16, 8] X[23, 1, 24, 30]\
22, 14] X[29, 7, 30, 6] X[22, 8, 23, 7] X[15, 9, 16, 8] X[23, 1, 24, 30]\
X[16, 2, 17, 1] X[9, 3, 10, 2] \n\n<table border=0><tr align=center>\n <td>\n <a \
X[16, 2, 17, 1] X[9, 3, 10, 2]

href=\"../Manual/TubePlot.html\"><img src=\"m.n_240.jpg\"\n \
<table border=0><tr align=center>
border=0 alt=\"T(m,n)\"><br><font size=-2>TubePlot</font></a>\n \
<td>
</td>\n <td>\n <h1>&nbsp;&nbsp; The m (-1 + n)-Crossing Torus Knot \
<a href="../Manual/TubePlot.html"><img src="m.n_240.jpg"
T(m,n)</h1>\n
border=0 alt="T(m,n)"><br><font size=-2>TubePlot</font></a>
</td>
<td>
<h1>&nbsp;&nbsp; The m (-1 + n)-Crossing Torus Knot T(m,n)</h1>
Include[$knotaka.html]
<p>Visit <a class=external
href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s
page</a> at <a class=external
href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno
tilus</a>!
<p><a href="../Manual/Acknowledgement.html">Acknowledgement</a>
</td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/GaussCode.html">Gauss Code</a>: </td>
<td><em>{PD[TorusKnot[m, n]]}</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/BR.html">Braid Representative</a>: </td>
<td>&nbsp;&nbsp;&nbsp;</td>
<td>
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> HTML]
</td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>:
</td>
<td><em>PolyPrint[1, t]</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: </td>
<td><em>PolyPrint[1, z]</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td>Other knots with the same <a
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>:
</td>
<td><em>{ToString[Knot[0, 1], FormatType -> HTMLForm]<>, <>
ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm]<>, <>
ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm]<>, ...}</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td>
<a href="../Manual/DetAndSignature.html">Determinant and Signature</a>:
</td>
<td><em>{1, 0}</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/Jones.html">Jones Polynomial</a>:
</td>
<td><em> Sqrt[q] TorusKnot[m, n]
PolyPrint[-(-----------------------), q]
1 + q</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td>Other knots (up to mirrors) with the same <a
href="../Manual/Jones.html">Jones Polynomial</a>:
</td>
<td><em>{...}</em></td>
</tr></table>

Include[ColouredJones.mhtml]

<p><table><tr align=left valign=top>
<td><a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>:
</td>
<td><em>PolyPrint[TorusKnot[m, n], q]</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/Kauffman.html">Kauffman Polynomial</a>:
</td>
<td><em></em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/Vassiliev.html">V<sub>2</sub> and
V<sub>3</sub>, the type 2 and 3 Vassiliev invariants</a>: </td>
<td><em>{0, 0}</em></td>
</tr></table>

<p><a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>.
The coefficients of the monomials <em>t<sup>r</sup>q<sup>j</sup></em>
are shown, along with their alternating sums &chi; (fixed <em>j</em>,
alternation over <em>r</em>).
The squares with <font class=HLYellow>yellow</font> highlighting
are those on the "critical diagonals", where <em>j-2r=s+1</em> or
<em>j-2r=s+1</em>, where <em>s=0</em> is the signature of
T(m,n). Nonzero entries off the critical diagonals (if
any exist) are highlighted in <font class=HLRed>red</font>.
<br><center>
TabularKh[$Failed[q, t], {1, -1}]
</center>

ComputerTalkHeader

GraphicsBox[`1`.`2`_240.jpg, TubePlot[TorusKnot[`1`, `2`]], m, n]
InOut[Crossings[``], TorusKnot[m, n]]
InOut[PD[``], TorusKnot[m, n]]
InOut[GaussCode[``], TorusKnot[m, n]]
InOut[BR[``], TorusKnot[m, n]]
InOut[alex = Alexander[``][t], TorusKnot[m, n]]
InOut[Conway[``][z], TorusKnot[m, n]]
InOut[Select[AllKnots[], (alex === Alexander[#][t])&]]
InOut[{KnotDet[`1`], KnotSignature[`1`]}, TorusKnot[m, n]]
InOut[J=Jones[``][q], TorusKnot[m, n]]
InOut[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) ===\
Jones[#][q])&]]
Include[ColouredJonesM.mhtml]
InOut[A2Invariant[``][q], TorusKnot[m, n]]
InOut[Kauffman[``][a, z], TorusKnot[m, n]]
InOut[{Vassiliev[2][`1`], Vassiliev[3][`1`]}, TorusKnot[m, n]]
InOut[Kh[``][q, t], TorusKnot[m, n]]

</table>

<p><hr><p>

<table valign=center width=100% border=0><tr>
<td align=left>
<a href="/~drorbn/">Dror Bar-Natan</a>:
<a href="../index.html">The Knot Atlas</a>:
<a href="index.html">Torus Knots</a>:
<a href="#top">The Torus Knot T(m,n)</a>
</td>
<td align=right>
<table border=0><tr>
<td align=center>
<a href="prevm.prevn.html"><img border=0
width=120 height=120 src="prevm.prevn_120.jpg"
alt="T(prevm,prevn)"><br>T(prevm,prevn)</a>
</td><td align=center>
<a href="nextm.nextn.html"><img border=0
width=120 height=120 src="nextm.nextn_120.jpg"
alt="T(nextm,nextn)"><br>T(nextm,nextn)</a>
</td>
</tr></table>
</td>
</tr></table>

</body>
</html>

Revision as of 16:13, 25 August 2005


Previous: T(7,3); Next: T(15,2)

Further T(5,4) views

Planar Diagram: X[17, 25, 18, 24] X[10, 26, 11, 25] X[3, 27, 4, 26] X[11, 19, 12, 18] X[4,\

 20, 5, 19] X[27, 21, 28, 20] X[5, 13, 6, 12] X[28, 14, 29, 13] X[21, 15,\

 22, 14] X[29, 7, 30, 6] X[22, 8, 23, 7] X[15, 9, 16, 8] X[23, 1, 24, 30]\

 X[16, 2, 17, 1] X[9, 3, 10, 2] 
   <a href="../Manual/TubePlot.html"><img src="m.n_240.jpg"
   border=0 alt="T(m,n)">
TubePlot</a>

   The m (-1 + n)-Crossing Torus Knot T(m,n)

   Include[$knotaka.html]

Visit <a class=external href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s page</a> at <a class=external href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno tilus</a>!

<a href="../Manual/Acknowledgement.html">Acknowledgement</a>

<a href="../Manual/GaussCode.html">Gauss Code</a>: {PD[TorusKnot[m, n]]}

<a href="../Manual/BR.html">Braid Representative</a>:    
   BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> HTML]

<a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>: PolyPrint[1, t]

<a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: PolyPrint[1, z]

Other knots with the same <a
   href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>:
{ToString[Knot[0, 1], FormatType -> HTMLForm]<>, <>
 ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm]<>, <>

ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm]<>, ...}

   <a href="../Manual/DetAndSignature.html">Determinant and Signature</a>:
{1, 0}

<a href="../Manual/Jones.html">Jones Polynomial</a>: Sqrt[q] TorusKnot[m, n]

PolyPrint[-(-----------------------), q]

1 + q

Other knots (up to mirrors) with the same <a
   href="../Manual/Jones.html">Jones Polynomial</a>:
{...}

Include[ColouredJones.mhtml]

<a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>: PolyPrint[TorusKnot[m, n], q]

<a href="../Manual/Kauffman.html">Kauffman Polynomial</a>:

<a href="../Manual/Vassiliev.html">V2 and V3, the type 2 and 3 Vassiliev invariants</a>: {0, 0}

<a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>. The coefficients of the monomials trqj are shown, along with their alternating sums χ (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of T(m,n). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

 TabularKh[$Failed[q, t], {1, -1}]

ComputerTalkHeader

GraphicsBox[`1`.`2`_240.jpg, TubePlot[TorusKnot[`1`, `2`]], m, n] InOut[Crossings[``], TorusKnot[m, n]] InOut[PD[``], TorusKnot[m, n]] InOut[GaussCode[``], TorusKnot[m, n]] InOut[BR[``], TorusKnot[m, n]] InOut[alex = Alexander[``][t], TorusKnot[m, n]] InOut[Conway[``][z], TorusKnot[m, n]] InOut[Select[AllKnots[], (alex === Alexander[#][t])&]] InOut[{KnotDet[`1`], KnotSignature[`1`]}, TorusKnot[m, n]] InOut[J=Jones[``][q], TorusKnot[m, n]] InOut[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) ===\

  Jones[#][q])&]]

Include[ColouredJonesM.mhtml] InOut[A2Invariant[``][q], TorusKnot[m, n]] InOut[Kauffman[``][a, z], TorusKnot[m, n]] InOut[{Vassiliev[2][`1`], Vassiliev[3][`1`]}, TorusKnot[m, n]] InOut[Kh[``][q, t], TorusKnot[m, n]]


   <a href="/~drorbn/">Dror Bar-Natan</a>:
   <a href="../index.html">The Knot Atlas</a>:
   <a href="index.html">Torus Knots</a>:
   <a href="#top">The Torus Knot T(m,n)</a>
       <a href="prevm.prevn.html"><img border=0
       width=120 height=120 src="prevm.prevn_120.jpg"
       alt="T(prevm,prevn)">
T(prevm,prevn)</a>
       <a href="nextm.nextn.html"><img border=0
       width=120 height=120 src="nextm.nextn_120.jpg"
       alt="T(nextm,nextn)">
T(nextm,nextn)</a>

</body> </html>