T(5,4): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- Script generated - do not edit! --> |
|||
-->\n\n<span \ |
|||
<!-- TorusKnot[5, 4] --> |
|||
id=\"top\"></span>\n\n{{TorusKnotsNavigation|T(7,3)|T(15,2)}}\\ |
|||
n\n{{:Further T(5,4) views}}\n\n[[Planar Diagrams|Planar Diagram]]: X[17, 25, 18, 24] X[10, 26, 11, 25] X[3, 27, 4, 26] X[11, 19, 12, 18] X[4,\ |
|||
<span id="top"></span> |
|||
{{TorusKnotsNavigation|T(7,3)|T(15,2)}} |
|||
{{:Further T(5,4) views}} |
|||
[[Planar Diagrams|Planar Diagram]]: X[17, 25, 18, 24] X[10, 26, 11, 25] X[3, 27, 4, 26] X[11, 19, 12, 18] X[4,\ |
|||
20, 5, 19] X[27, 21, 28, 20] X[5, 13, 6, 12] X[28, 14, 29, 13] X[21, 15,\ |
20, 5, 19] X[27, 21, 28, 20] X[5, 13, 6, 12] X[28, 14, 29, 13] X[21, 15,\ |
||
Line 8: | Line 15: | ||
22, 14] X[29, 7, 30, 6] X[22, 8, 23, 7] X[15, 9, 16, 8] X[23, 1, 24, 30]\ |
22, 14] X[29, 7, 30, 6] X[22, 8, 23, 7] X[15, 9, 16, 8] X[23, 1, 24, 30]\ |
||
X[16, 2, 17, 1] X[9, 3, 10, 2] |
X[16, 2, 17, 1] X[9, 3, 10, 2] |
||
href=\"../Manual/TubePlot.html\"><img src=\"m.n_240.jpg\"\n \ |
|||
<table border=0><tr align=center> |
|||
border=0 alt=\"T(m,n)\"><br><font size=-2>TubePlot</font></a>\n \ |
|||
<td> |
|||
</td>\n <td>\n <h1> The m (-1 + n)-Crossing Torus Knot \ |
|||
<a href="../Manual/TubePlot.html"><img src="m.n_240.jpg" |
|||
T(m,n)</h1>\n |
|||
border=0 alt="T(m,n)"><br><font size=-2>TubePlot</font></a> |
|||
</td> |
|||
<td> |
|||
<h1> The m (-1 + n)-Crossing Torus Knot T(m,n)</h1> |
|||
Include[$knotaka.html] |
|||
<p>Visit <a class=external |
|||
href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s |
|||
page</a> at <a class=external |
|||
href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno |
|||
tilus</a>! |
|||
<p><a href="../Manual/Acknowledgement.html">Acknowledgement</a> |
|||
</td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/GaussCode.html">Gauss Code</a>: </td> |
|||
<td><em>{PD[TorusKnot[m, n]]}</em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/BR.html">Braid Representative</a>: </td> |
|||
<td> </td> |
|||
<td> |
|||
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> HTML] |
|||
</td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>: |
|||
</td> |
|||
<td><em>PolyPrint[1, t]</em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: </td> |
|||
<td><em>PolyPrint[1, z]</em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td>Other knots with the same <a |
|||
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>: |
|||
</td> |
|||
<td><em>{ToString[Knot[0, 1], FormatType -> HTMLForm]<>, <> |
|||
ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm]<>, <> |
|||
ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm]<>, ...}</em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td> |
|||
<a href="../Manual/DetAndSignature.html">Determinant and Signature</a>: |
|||
</td> |
|||
<td><em>{1, 0}</em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/Jones.html">Jones Polynomial</a>: |
|||
</td> |
|||
<td><em> Sqrt[q] TorusKnot[m, n] |
|||
PolyPrint[-(-----------------------), q] |
|||
1 + q</em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td>Other knots (up to mirrors) with the same <a |
|||
href="../Manual/Jones.html">Jones Polynomial</a>: |
|||
</td> |
|||
<td><em>{...}</em></td> |
|||
</tr></table> |
|||
Include[ColouredJones.mhtml] |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>: |
|||
</td> |
|||
<td><em>PolyPrint[TorusKnot[m, n], q]</em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/Kauffman.html">Kauffman Polynomial</a>: |
|||
</td> |
|||
<td><em></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/Vassiliev.html">V<sub>2</sub> and |
|||
V<sub>3</sub>, the type 2 and 3 Vassiliev invariants</a>: </td> |
|||
<td><em>{0, 0}</em></td> |
|||
</tr></table> |
|||
<p><a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>. |
|||
The coefficients of the monomials <em>t<sup>r</sup>q<sup>j</sup></em> |
|||
are shown, along with their alternating sums χ (fixed <em>j</em>, |
|||
alternation over <em>r</em>). |
|||
The squares with <font class=HLYellow>yellow</font> highlighting |
|||
are those on the "critical diagonals", where <em>j-2r=s+1</em> or |
|||
<em>j-2r=s+1</em>, where <em>s=0</em> is the signature of |
|||
T(m,n). Nonzero entries off the critical diagonals (if |
|||
any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<br><center> |
|||
TabularKh[$Failed[q, t], {1, -1}] |
|||
</center> |
|||
ComputerTalkHeader |
|||
GraphicsBox[`1`.`2`_240.jpg, TubePlot[TorusKnot[`1`, `2`]], m, n] |
|||
InOut[Crossings[``], TorusKnot[m, n]] |
|||
InOut[PD[``], TorusKnot[m, n]] |
|||
InOut[GaussCode[``], TorusKnot[m, n]] |
|||
InOut[BR[``], TorusKnot[m, n]] |
|||
InOut[alex = Alexander[``][t], TorusKnot[m, n]] |
|||
InOut[Conway[``][z], TorusKnot[m, n]] |
|||
InOut[Select[AllKnots[], (alex === Alexander[#][t])&]] |
|||
InOut[{KnotDet[`1`], KnotSignature[`1`]}, TorusKnot[m, n]] |
|||
InOut[J=Jones[``][q], TorusKnot[m, n]] |
|||
InOut[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) ===\ |
|||
Jones[#][q])&]] |
|||
Include[ColouredJonesM.mhtml] |
|||
InOut[A2Invariant[``][q], TorusKnot[m, n]] |
|||
InOut[Kauffman[``][a, z], TorusKnot[m, n]] |
|||
InOut[{Vassiliev[2][`1`], Vassiliev[3][`1`]}, TorusKnot[m, n]] |
|||
InOut[Kh[``][q, t], TorusKnot[m, n]] |
|||
</table> |
|||
<p><hr><p> |
|||
<table valign=center width=100% border=0><tr> |
|||
<td align=left> |
|||
<a href="/~drorbn/">Dror Bar-Natan</a>: |
|||
<a href="../index.html">The Knot Atlas</a>: |
|||
<a href="index.html">Torus Knots</a>: |
|||
<a href="#top">The Torus Knot T(m,n)</a> |
|||
</td> |
|||
<td align=right> |
|||
<table border=0><tr> |
|||
<td align=center> |
|||
<a href="prevm.prevn.html"><img border=0 |
|||
width=120 height=120 src="prevm.prevn_120.jpg" |
|||
alt="T(prevm,prevn)"><br>T(prevm,prevn)</a> |
|||
</td><td align=center> |
|||
<a href="nextm.nextn.html"><img border=0 |
|||
width=120 height=120 src="nextm.nextn_120.jpg" |
|||
alt="T(nextm,nextn)"><br>T(nextm,nextn)</a> |
|||
</td> |
|||
</tr></table> |
|||
</td> |
|||
</tr></table> |
|||
</body> |
|||
</html> |
Revision as of 16:13, 25 August 2005
Previous: T(7,3); Next: T(15,2)
Planar Diagram: X[17, 25, 18, 24] X[10, 26, 11, 25] X[3, 27, 4, 26] X[11, 19, 12, 18] X[4,\
20, 5, 19] X[27, 21, 28, 20] X[5, 13, 6, 12] X[28, 14, 29, 13] X[21, 15,\ 22, 14] X[29, 7, 30, 6] X[22, 8, 23, 7] X[15, 9, 16, 8] X[23, 1, 24, 30]\ X[16, 2, 17, 1] X[9, 3, 10, 2]
<a href="../Manual/TubePlot.html"><img src="m.n_240.jpg" border=0 alt="T(m,n)"> |
The m (-1 + n)-Crossing Torus Knot T(m,n)Include[$knotaka.html] Visit <a class=external href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s page</a> at <a class=external href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno tilus</a>! <a href="../Manual/Acknowledgement.html">Acknowledgement</a> |
<a href="../Manual/GaussCode.html">Gauss Code</a>: | {PD[TorusKnot[m, n]]} |
<a href="../Manual/BR.html">Braid Representative</a>: |
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> HTML] |
<a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>: | PolyPrint[1, t] |
<a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: | PolyPrint[1, z] |
Other knots with the same <a
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>: |
{ToString[Knot[0, 1], FormatType -> HTMLForm]<>, <>
ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm]<>, <>ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm]<>, ...} |
<a href="../Manual/DetAndSignature.html">Determinant and Signature</a>: |
{1, 0} |
<a href="../Manual/Jones.html">Jones Polynomial</a>: | Sqrt[q] TorusKnot[m, n]
PolyPrint[-(-----------------------), q] 1 + q |
Other knots (up to mirrors) with the same <a
href="../Manual/Jones.html">Jones Polynomial</a>: |
{...} |
Include[ColouredJones.mhtml]
<a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>: | PolyPrint[TorusKnot[m, n], q] |
<a href="../Manual/Kauffman.html">Kauffman Polynomial</a>: |
<a href="../Manual/Vassiliev.html">V2 and V3, the type 2 and 3 Vassiliev invariants</a>: | {0, 0} |
<a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>.
The coefficients of the monomials trqj
are shown, along with their alternating sums χ (fixed j,
alternation over r).
The squares with yellow highlighting
are those on the "critical diagonals", where j-2r=s+1 or
j-2r=s+1, where s=0 is the signature of
T(m,n). Nonzero entries off the critical diagonals (if
any exist) are highlighted in red.
TabularKh[$Failed[q, t], {1, -1}]
ComputerTalkHeader
GraphicsBox[`1`.`2`_240.jpg, TubePlot[TorusKnot[`1`, `2`]], m, n] InOut[Crossings[``], TorusKnot[m, n]] InOut[PD[``], TorusKnot[m, n]] InOut[GaussCode[``], TorusKnot[m, n]] InOut[BR[``], TorusKnot[m, n]] InOut[alex = Alexander[``][t], TorusKnot[m, n]] InOut[Conway[``][z], TorusKnot[m, n]] InOut[Select[AllKnots[], (alex === Alexander[#][t])&]] InOut[{KnotDet[`1`], KnotSignature[`1`]}, TorusKnot[m, n]] InOut[J=Jones[``][q], TorusKnot[m, n]] InOut[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) ===\
Jones[#][q])&]]
Include[ColouredJonesM.mhtml] InOut[A2Invariant[``][q], TorusKnot[m, n]] InOut[Kauffman[``][a, z], TorusKnot[m, n]] InOut[{Vassiliev[2][`1`], Vassiliev[3][`1`]}, TorusKnot[m, n]] InOut[Kh[``][q, t], TorusKnot[m, n]]
<a href="/~drorbn/">Dror Bar-Natan</a>: <a href="../index.html">The Knot Atlas</a>: <a href="index.html">Torus Knots</a>: <a href="#top">The Torus Knot T(m,n)</a> |
|
</body> </html>