Edit T(7,3) Further Notes and Views
Knot presentations
Planar diagram presentation
|
X1,11,2,10 X20,12,21,11 X21,3,22,2 X12,4,13,3 X13,23,14,22 X4,24,5,23 X5,15,6,14 X24,16,25,15 X25,7,26,6 X16,8,17,7 X17,27,18,26 X8,28,9,27 X9,19,10,18 X28,20,1,19
|
Gauss code
|
-1, 3, 4, -6, -7, 9, 10, -12, -13, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -2, -3, 5, 6, -8, -9, 11, 12, -14
|
Dowker-Thistlethwaite code
|
10 -12 14 -16 18 -20 22 -24 26 -28 2 -4 6 -8
|
Polynomial invariants
Alexander polynomial |
![{\displaystyle t^{6}-t^{5}+t^{3}-t^{2}+1-t^{-2}+t^{-3}-t^{-5}+t^{-6}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6cff4cca38ff74e1421caab9251a68ad4d221376) |
Conway polynomial |
![{\displaystyle z^{12}+11z^{10}+44z^{8}+78z^{6}+60z^{4}+16z^{2}+1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fa77cebd97658e3de905eaff090a426984961e62) |
2nd Alexander ideal (db, data sources) |
![{\displaystyle \{1\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5acdcac635f883f8b4f0a01aa03b16b22f23b124) |
Determinant and Signature |
{ 1, 8 } |
Jones polynomial |
![{\displaystyle -q^{14}+q^{8}+q^{6}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/02747b84a094ea281b9f03041a698b002bbf5205) |
HOMFLY-PT polynomial (db, data sources) |
![{\displaystyle z^{12}a^{-12}+12z^{10}a^{-12}-z^{10}a^{-14}+55z^{8}a^{-12}-11z^{8}a^{-14}+121z^{6}a^{-12}-44z^{6}a^{-14}+z^{6}a^{-16}+132z^{4}a^{-12}-78z^{4}a^{-14}+6z^{4}a^{-16}+66z^{2}a^{-12}-60z^{2}a^{-14}+10z^{2}a^{-16}+12a^{-12}-16a^{-14}+5a^{-16}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/70193a94581eb691e02f7ce39c66671055a28f2b) |
Kauffman polynomial (db, data sources) |
![{\displaystyle z^{12}a^{-12}+z^{12}a^{-14}+z^{11}a^{-13}+z^{11}a^{-15}-12z^{10}a^{-12}-12z^{10}a^{-14}-11z^{9}a^{-13}-11z^{9}a^{-15}+55z^{8}a^{-12}+55z^{8}a^{-14}+44z^{7}a^{-13}+44z^{7}a^{-15}-121z^{6}a^{-12}-122z^{6}a^{-14}-z^{6}a^{-16}-78z^{5}a^{-13}-78z^{5}a^{-15}+132z^{4}a^{-12}+138z^{4}a^{-14}+6z^{4}a^{-16}+60z^{3}a^{-13}+60z^{3}a^{-15}-66z^{2}a^{-12}-76z^{2}a^{-14}-10z^{2}a^{-16}-16za^{-13}-16za^{-15}+12a^{-12}+16a^{-14}+5a^{-16}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c65602dd0d5e96e8bffbd2943e0d75c39c3eafb3) |
The A2 invariant |
Data:T(7,3)/QuantumInvariant/A2/1,0 |
The G2 invariant |
Data:T(7,3)/QuantumInvariant/G2/1,0 |
Further Quantum Invariants
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["T(7,3)"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{}
Same Jones Polynomial (up to mirroring,
):
{}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["T(7,3)"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , }
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
Data:T(7,3)/V 2,1
|
Data:T(7,3)/V 3,1
|
Data:T(7,3)/V 4,1
|
Data:T(7,3)/V 4,2
|
Data:T(7,3)/V 4,3
|
Data:T(7,3)/V 5,1
|
Data:T(7,3)/V 5,2
|
Data:T(7,3)/V 5,3
|
Data:T(7,3)/V 5,4
|
Data:T(7,3)/V 6,1
|
Data:T(7,3)/V 6,2
|
Data:T(7,3)/V 6,3
|
Data:T(7,3)/V 6,4
|
Data:T(7,3)/V 6,5
|
Data:T(7,3)/V 6,6
|
Data:T(7,3)/V 6,7
|
Data:T(7,3)/V 6,8
|
Data:T(7,3)/V 6,9
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(7,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | χ |
29 | | | | | | | | | | 1 | -1 |
27 | | | | | | | | | | 1 | -1 |
25 | | | | | | | | 1 | 1 | | 0 |
23 | | | | | | 1 | | | 1 | | 0 |
21 | | | | | | 1 | 1 | | | | 0 |
19 | | | | 1 | 1 | | | | | | 0 |
17 | | | | | 1 | | | | | | 1 |
15 | | | 1 | | | | | | | | 1 |
13 | 1 | | | | | | | | | | 1 |
11 | 1 | | | | | | | | | | 1 |
|