|
|
Line 1: |
Line 1: |
|
|
http://www.textnobasdelca.com |
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
Revision as of 05:53, 22 May 2009
http://www.textnobasdelca.com
Knot presentations
Planar diagram presentation
|
X1425 X3,12,4,13 X7,14,8,15 X9,19,10,18 X19,7,20,6 X5,17,6,16 X17,11,18,10 X13,8,14,9 X15,1,16,20 X11,2,12,3
|
Gauss code
|
-1, 10, -2, 1, -6, 5, -3, 8, -4, 7, -10, 2, -8, 3, -9, 6, -7, 4, -5, 9
|
Dowker-Thistlethwaite code
|
4 12 16 14 18 2 8 20 10 6
|
Conway Notation
|
[210:2:20]
|
Minimum Braid Representative
|
A Morse Link Presentation
|
An Arc Presentation
|
Length is 12, width is 5,
Braid index is 5
|
|
![10 107 AP.gif](/images/6/69/10_107_AP.gif) [{12, 2}, {1, 10}, {6, 11}, {10, 12}, {3, 7}, {2, 5}, {9, 6}, {7, 4}, {11, 8}, {5, 9}, {8, 3}, {4, 1}]
|
[edit Notes on presentations of 10 107]
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 107"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,12,4,13 X7,14,8,15 X9,19,10,18 X19,7,20,6 X5,17,6,16 X17,11,18,10 X13,8,14,9 X15,1,16,20 X11,2,12,3
|
Out[5]=
|
-1, 10, -2, 1, -6, 5, -3, 8, -4, 7, -10, 2, -8, 3, -9, 6, -7, 4, -5, 9
|
Out[6]=
|
4 12 16 14 18 2 8 20 10 6
|
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
In[11]:=
|
Show[BraidPlot[br]]
|
In[12]:=
|
Show[DrawMorseLink[K]]
|
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 2}, {1, 10}, {6, 11}, {10, 12}, {3, 7}, {2, 5}, {9, 6}, {7, 4}, {11, 8}, {5, 9}, {8, 3}, {4, 1}]
|
Four dimensional invariants
Polynomial invariants
Alexander polynomial |
![{\displaystyle -t^{3}+8t^{2}-22t+31-22t^{-1}+8t^{-2}-t^{-3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/26094ad00278a860edbf740f383708283cfa3624) |
Conway polynomial |
![{\displaystyle -z^{6}+2z^{4}+z^{2}+1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3fd36836ff3c654a5ccf1fa6456be06c10ceea79) |
2nd Alexander ideal (db, data sources) |
![{\displaystyle \{1\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5acdcac635f883f8b4f0a01aa03b16b22f23b124) |
Determinant and Signature |
{ 93, 0 } |
Jones polynomial |
![{\displaystyle -q^{5}+3q^{4}-7q^{3}+12q^{2}-14q+16-15q^{-1}+12q^{-2}-8q^{-3}+4q^{-4}-q^{-5}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ae856208d6bf5fc5088be4e59968f4317a0fe572) |
HOMFLY-PT polynomial (db, data sources) |
![{\displaystyle -z^{6}+2a^{2}z^{4}+2z^{4}a^{-2}-2z^{4}-a^{4}z^{2}+2a^{2}z^{2}+3z^{2}a^{-2}-z^{2}a^{-4}-2z^{2}+2a^{-2}-a^{-4}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b8b2d03c628523a73d641e2e50df25bf9b85681c) |
Kauffman polynomial (db, data sources) |
![{\displaystyle 2az^{9}+2z^{9}a^{-1}+6a^{2}z^{8}+5z^{8}a^{-2}+11z^{8}+7a^{3}z^{7}+11az^{7}+9z^{7}a^{-1}+5z^{7}a^{-3}+4a^{4}z^{6}-5a^{2}z^{6}-4z^{6}a^{-2}+3z^{6}a^{-4}-16z^{6}+a^{5}z^{5}-12a^{3}z^{5}-27az^{5}-22z^{5}a^{-1}-7z^{5}a^{-3}+z^{5}a^{-5}-6a^{4}z^{4}-4a^{2}z^{4}-2z^{4}a^{-2}-5z^{4}a^{-4}+5z^{4}-a^{5}z^{3}+6a^{3}z^{3}+17az^{3}+15z^{3}a^{-1}+3z^{3}a^{-3}-2z^{3}a^{-5}+2a^{4}z^{2}+2a^{2}z^{2}+3z^{2}a^{-2}+3z^{2}a^{-4}-a^{3}z-3az-3za^{-1}+za^{-5}-2a^{-2}-a^{-4}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0585088723b799ec9095da8f10b1bb111ad38bbd) |
The A2 invariant |
![{\displaystyle -q^{16}+q^{14}+2q^{12}-3q^{10}+2q^{8}-q^{6}-2q^{4}+3q^{2}-2+4q^{-2}-q^{-4}+q^{-6}+3q^{-8}-3q^{-10}+q^{-12}-q^{-16}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a674245f5eeca4b0d8559efcad9363f5a5aae2c) |
The G2 invariant |
![{\displaystyle q^{80}-3q^{78}+7q^{76}-13q^{74}+15q^{72}-14q^{70}+3q^{68}+22q^{66}-52q^{64}+86q^{62}-103q^{60}+81q^{58}-21q^{56}-81q^{54}+193q^{52}-265q^{50}+263q^{48}-160q^{46}-20q^{44}+222q^{42}-364q^{40}+386q^{38}-262q^{36}+37q^{34}+184q^{32}-320q^{30}+303q^{28}-144q^{26}-75q^{24}+258q^{22}-309q^{20}+196q^{18}+30q^{16}-286q^{14}+447q^{12}-447q^{10}+279q^{8}-290q^{4}+500q^{2}-540+409q^{-2}-151q^{-4}-144q^{-6}+361q^{-8}-422q^{-10}+318q^{-12}-95q^{-14}-130q^{-16}+276q^{-18}-268q^{-20}+115q^{-22}+106q^{-24}-293q^{-26}+355q^{-28}-262q^{-30}+54q^{-32}+177q^{-34}-333q^{-36}+372q^{-38}-279q^{-40}+115q^{-42}+54q^{-44}-183q^{-46}+223q^{-48}-191q^{-50}+117q^{-52}-32q^{-54}-29q^{-56}+60q^{-58}-67q^{-60}+53q^{-62}-33q^{-64}+13q^{-66}+q^{-68}-9q^{-70}+9q^{-72}-8q^{-74}+5q^{-76}-2q^{-78}+q^{-80}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e4cf8c6082a4ee3869cac38de80522cb86008303) |
Further Quantum Invariants
Further quantum knot invariants for 10_107.
A1 Invariants.
Weight
|
Invariant
|
1
|
|
2
|
|
3
|
|
A2 Invariants.
Weight
|
Invariant
|
1,0
|
|
2,0
|
|
A3 Invariants.
Weight
|
Invariant
|
0,1,0
|
|
1,0,0
|
|
B2 Invariants.
Weight
|
Invariant
|
0,1
|
|
1,0
|
|
G2 Invariants.
Weight
|
Invariant
|
1,0
|
|
.
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 107"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{}
Same Jones Polynomial (up to mirroring,
):
{}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 107"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , }
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 107. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
-5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | χ |
11 | | | | | | | | | | | 1 | -1 |
9 | | | | | | | | | | 2 | | 2 |
7 | | | | | | | | | 5 | 1 | | -4 |
5 | | | | | | | | 7 | 2 | | | 5 |
3 | | | | | | | 7 | 5 | | | | -2 |
1 | | | | | | 9 | 7 | | | | | 2 |
-1 | | | | | 7 | 8 | | | | | | 1 |
-3 | | | | 5 | 8 | | | | | | | -3 |
-5 | | | 3 | 7 | | | | | | | | 4 |
-7 | | 1 | 5 | | | | | | | | | -4 |
-9 | | 3 | | | | | | | | | | 3 |
-11 | 1 | | | | | | | | | | | -1 |
|
The Coloured Jones Polynomials