Torus Knot Splice Base: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 40: Line 40:


{{Computer Talk Header}}
{{Computer Talk Header}}

<table>
<tr valign=top>
<td><font color=blue><pre>In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</font></pre></td>
<td align=left><font color=red><pre>&lt;&lt; KnotTheory`</pre></font></td>
</tr>
<tr valign=top><td colspan=2><pre><*KnotTheoryWelcomeMessage[]*></pre></td></tr>

Revision as of 15:42, 26 August 2005


[[Image:Data:Torus Knot Splice Base/Previous Knot.{{{ext}}}|80px|link=Data:Torus Knot Splice Base/Previous Knot]]

[[Data:Torus Knot Splice Base/Previous Knot]]

[[Image:Data:Torus Knot Splice Base/Next Knot.{{{ext}}}|80px|link=Data:Torus Knot Splice Base/Next Knot]]

[[Data:Torus Knot Splice Base/Next Knot]]

Visit [<*KnotilusURL[K]<>" "<>ThisKnot*>'s page] at Knotilus!

Visit <*m*>.<*n*>.html <*ThisKnot*>'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation <*PD[K]*>
Gauss code <*List @@ GaussCode[K]*>
Dowker-Thistlethwaite code <*StringReplace[StringTake[ToString[DTCode[K]], {8, -2}], ","->""]*>

Polynomial invariants

Polynomial invariants

Alexander polynomial Data:Torus Knot Splice Base/Alexander Polynomial
Conway polynomial Data:Torus Knot Splice Base/Conway Polynomial
2nd Alexander ideal (db, data sources) Data:Torus Knot Splice Base/2nd AlexanderIdeal
Determinant and Signature { Data:Torus Knot Splice Base/Determinant, Data:Torus Knot Splice Base/Signature }
Jones polynomial Data:Torus Knot Splice Base/Jones Polynomial
HOMFLY-PT polynomial (db, data sources) Data:Torus Knot Splice Base/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:Torus Knot Splice Base/Kauffman Polynomial
The A2 invariant Data:Torus Knot Splice Base/QuantumInvariant/A2/1,0
The G2 invariant Data:Torus Knot Splice Base/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 <*{Vassiliev[2][K], Vassiliev[3][K]}*>)

Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where <*s=KnotSignature[K]*> is the signature of <*ThisKnot*>. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

<*TabularKh[Kh[K][q, t], s+{1,-1}]*>

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    </font>
<< KnotTheory`
<*KnotTheoryWelcomeMessage[]*>