T(9,5): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 5: Line 5:
<span id="top"></span>
<span id="top"></span>


{{Knot Navigation Links|prev=T(35,2).jpg|next=$Failed.jpg}}
{{Knot Navigation Links|prev=T(35,2).jpg|next=T(3,2).jpg}}


Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-19,-22,-25,29,30,31,32,-36,-3,-6,-9,13,14,15,16,-20,-23,-26,-29,33,34,35,36,-4,-7,-10,-13,17,18,19,20,-24,-27,-30,-33,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-31,-34,-1,5,6,7,8,-12,-15,-18,-21,25,26,27,28,-32,-35,-2,-5,9,10,11,12,-16/goTop.html T(9,5)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!
Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-19,-22,-25,29,30,31,32,-36,-3,-6,-9,13,14,15,16,-20,-23,-26,-29,33,34,35,36,-4,-7,-10,-13,17,18,19,20,-24,-27,-30,-33,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-31,-34,-1,5,6,7,8,-12,-15,-18,-21,25,26,27,28,-32,-35,-2,-5,9,10,11,12,-16/goTop.html T(9,5)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!

Revision as of 21:21, 26 August 2005


[[Image:T(35,2).{{{ext}}}|80px|link=T(35,2)]]

T(35,2)

[[Image:T(37,2).{{{ext}}}|80px|link=T(37,2)]]

T(37,2)

Visit T(9,5)'s page at Knotilus!

Visit T(9,5)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X51,37,52,36 X66,38,67,37 X9,39,10,38 X24,40,25,39 X67,53,68,52 X10,54,11,53 X25,55,26,54 X40,56,41,55 X11,69,12,68 X26,70,27,69 X41,71,42,70 X56,72,57,71 X27,13,28,12 X42,14,43,13 X57,15,58,14 X72,16,1,15 X43,29,44,28 X58,30,59,29 X1,31,2,30 X16,32,17,31 X59,45,60,44 X2,46,3,45 X17,47,18,46 X32,48,33,47 X3,61,4,60 X18,62,19,61 X33,63,34,62 X48,64,49,63 X19,5,20,4 X34,6,35,5 X49,7,50,6 X64,8,65,7 X35,21,36,20 X50,22,51,21 X65,23,66,22 X8,24,9,23
Gauss code {-19, -22, -25, 29, 30, 31, 32, -36, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29, 33, 34, 35, 36, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -30, -33, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -34, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26, 27, 28, -32, -35, -2, -5, 9, 10, 11, 12, -16}
Dowker-Thistlethwaite code 30 60 -34 -64 38 68 -42 -72 46 4 -50 -8 54 12 -58 -16 62 20 -66 -24 70 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 52 -26 -56

Polynomial invariants

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 1, 24 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Data:T(9,5)/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:T(9,5)/Kauffman Polynomial
The A2 invariant Data:T(9,5)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(9,5)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 600})

Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 24 is the signature of T(9,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
0123456789101112131415161718192021χ
63                    110
61                  11  0
59                1  21 0
57                131   -1
55              13  1   -1
53            12 22     -1
51             32       -1
49           32 1       0
47         2  2         0
45       1 12           0
43     1 12             0
41     11 1             1
39   11 1               1
37    1                 1
35  1                   1
331                     1
311                     1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[9, 5]]
Out[2]=   
36
In[3]:=
PD[TorusKnot[9, 5]]
Out[3]=   
PD[X[51, 37, 52, 36], X[66, 38, 67, 37], X[9, 39, 10, 38], 
 X[24, 40, 25, 39], X[67, 53, 68, 52], X[10, 54, 11, 53], 

 X[25, 55, 26, 54], X[40, 56, 41, 55], X[11, 69, 12, 68], 

 X[26, 70, 27, 69], X[41, 71, 42, 70], X[56, 72, 57, 71], 

 X[27, 13, 28, 12], X[42, 14, 43, 13], X[57, 15, 58, 14], 

 X[72, 16, 1, 15], X[43, 29, 44, 28], X[58, 30, 59, 29], 

 X[1, 31, 2, 30], X[16, 32, 17, 31], X[59, 45, 60, 44], 

 X[2, 46, 3, 45], X[17, 47, 18, 46], X[32, 48, 33, 47], 

 X[3, 61, 4, 60], X[18, 62, 19, 61], X[33, 63, 34, 62], 

 X[48, 64, 49, 63], X[19, 5, 20, 4], X[34, 6, 35, 5], X[49, 7, 50, 6], 

 X[64, 8, 65, 7], X[35, 21, 36, 20], X[50, 22, 51, 21], 

X[65, 23, 66, 22], X[8, 24, 9, 23]]
In[4]:=
GaussCode[TorusKnot[9, 5]]
Out[4]=   
GaussCode[-19, -22, -25, 29, 30, 31, 32, -36, -3, -6, -9, 13, 14, 15, 
 16, -20, -23, -26, -29, 33, 34, 35, 36, -4, -7, -10, -13, 17, 18, 19, 

 20, -24, -27, -30, -33, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 

 24, -28, -31, -34, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26, 27, 

28, -32, -35, -2, -5, 9, 10, 11, 12, -16]
In[5]:=
BR[TorusKnot[9, 5]]
Out[5]=   
BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 
   2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}]
In[6]:=
alex = Alexander[TorusKnot[9, 5]][t]
Out[6]=   
      -16    -15    -11    -10    -7    -5    -2    2    5    7    10

-1 + t - t + t - t + t - t + t + t - t + t - t +

  11    15    16
t - t + t
In[7]:=
Conway[TorusKnot[9, 5]][z]
Out[7]=   
        2         4          6          8           10           12

1 + 80 z + 1772 z + 17094 z + 87560 z + 267421 z + 526423 z +

         14           16           18           20          22
 703851 z   + 661810 z   + 447240 z   + 219625 z   + 78431 z   + 

        24         26        28       30    32
20150 z + 3627 z + 434 z + 31 z + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{}
In[9]:=
{KnotDet[TorusKnot[9, 5]], KnotSignature[TorusKnot[9, 5]]}
Out[9]=   
{1, 24}
In[10]:=
J=Jones[TorusKnot[9, 5]][q]
Out[10]=   
 16    18    20    26    28
q   + q   + q   - q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{}
In[12]:=
A2Invariant[TorusKnot[9, 5]][q]
Out[12]=   
NotAvailable
In[13]:=
Kauffman[TorusKnot[9, 5]][a, z]
Out[13]=   
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[9, 5]], Vassiliev[3][TorusKnot[9, 5]]}
Out[14]=   
{0, 600}
In[15]:=
Kh[TorusKnot[9, 5]][q, t]
Out[15]=   
 31    33    35  2    39  3    37  4    39  4    41  5    43  5

q + q + q t + q t + q t + q t + q t + q t +

  39  6    41  6    43  7    45  7    41  8      43  8    45  9
 q   t  + q   t  + q   t  + q   t  + q   t  + 2 q   t  + q   t  + 

    47  9      45  10      49  11      47  12      49  12    53  12
 2 q   t  + 2 q   t   + 3 q   t   + 2 q   t   + 2 q   t   + q   t   + 

    51  13      53  13    49  14      51  14    55  14      53  15
 3 q   t   + 2 q   t   + q   t   + 2 q   t   + q   t   + 2 q   t   + 

    55  15      53  16    57  16    59  16      57  17    55  18
 3 q   t   + 2 q   t   + q   t   + q   t   + 3 q   t   + q   t   + 

  57  18    61  18      59  19    61  19    59  20    63  20    63  21
q t + q t + 2 q t + q t + q t + q t + q t