T(8,3): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
<span id="top"></span> |
<span id="top"></span> |
||
{{Knot Navigation Links| |
{{Knot Navigation Links|ext=jpg}} |
||
{| align=left |
{| align=left |
||
|- valign=top |
|- valign=top |
||
|[[Image: |
|[[Image:{{PAGENAME}}.jpg]] |
||
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/2,-4,-5,7,8,-10,-11,13,14,-16,-1,3,4,-6,-7,9,10,-12,-13,15,16,-2,-3,5,6,-8,-9,11,12,-14,-15,1/goTop.html |
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/2,-4,-5,7,8,-10,-11,13,14,-16,-1,3,4,-6,-7,9,10,-12,-13,15,16,-2,-3,5,6,-8,-9,11,12,-14,-15,1/goTop.html {{PAGENAME}}'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/8.3.html |
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/8.3.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
||
{{: |
{{:{{PAGENAME}} Quick Notes}} |
||
|} |
|} |
||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
{{: |
{{:{{PAGENAME}} Further Notes and Views}} |
||
{{Knot Presentations}} |
|||
===Knot presentations=== |
===Knot presentations=== |
||
Line 28: | Line 30: | ||
|- |
|- |
||
|'''[[Gauss Codes|Gauss code]]''' |
|'''[[Gauss Codes|Gauss code]]''' |
||
|style="padding-left: 1em;" | {2, |
|style="padding-left: 1em;" | <math>\{2,-4,-5,7,8,-10,-11,13,14,-16,-1,3,4,-6,-7,9,10,-12,-13,15,16,-2,-3,5,6,-8,-9,11,12,-14,-15,1\}</math> |
||
|- |
|- |
||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
||
Line 34: | Line 36: | ||
|} |
|} |
||
{{Polynomial Invariants |
{{Polynomial Invariants}} |
||
{{Vassiliev Invariants}} |
|||
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]=== |
|||
{| style="margin-left: 1em;" |
|||
|- |
|||
|'''V<sub>2</sub> and V<sub>3</sub>''' |
|||
|style="padding-left: 1em;" | {0, 84} |
|||
|} |
|||
===[[Khovanov Homology]]=== |
===[[Khovanov Homology]]=== |
||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math> |
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
||
<center><table border=1> |
<center><table border=1> |
||
<tr align=center> |
<tr align=center> |
||
<td width=12.5%><table cellpadding=0 cellspacing=0> |
<td width=12.5%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
<tr><td>\</td><td> </td><td>r</td></tr> |
||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.25%>0</td ><td width=6.25%>1</td ><td width=6.25%>2</td ><td width=6.25%>3</td ><td width=6.25%>4</td ><td width=6.25%>5</td ><td width=6.25%>6</td ><td width=6.25%>7</td ><td width=6.25%>8</td ><td width=6.25%>9</td ><td width=6.25%>10</td ><td width=6.25%>11</td ><td width=12.5%>χ</td></tr> |
<td width=6.25%>0</td ><td width=6.25%>1</td ><td width=6.25%>2</td ><td width=6.25%>3</td ><td width=6.25%>4</td ><td width=6.25%>5</td ><td width=6.25%>6</td ><td width=6.25%>7</td ><td width=6.25%>8</td ><td width=6.25%>9</td ><td width=6.25%>10</td ><td width=6.25%>11</td ><td width=12.5%>χ</td></tr> |
||
<tr align=center><td>33</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>33</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>31</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>31</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 75: | Line 71: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[8, 3]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[8, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>16</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>16</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[8, 3]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[8, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[11, 1, 12, 32], X[22, 2, 23, 1], X[23, 13, 24, 12], |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[11, 1, 12, 32], X[22, 2, 23, 1], X[23, 13, 24, 12], |
||
X[2, 14, 3, 13], X[3, 25, 4, 24], X[14, 26, 15, 25], X[15, 5, 16, 4], |
X[2, 14, 3, 13], X[3, 25, 4, 24], X[14, 26, 15, 25], X[15, 5, 16, 4], |
||
Line 88: | Line 84: | ||
X[31, 21, 32, 20], X[10, 22, 11, 21]]</nowiki></pre></td></tr> |
X[31, 21, 32, 20], X[10, 22, 11, 21]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[8, 3]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[8, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -1, 3, 4, -6, -7, 9, |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -1, 3, 4, -6, -7, 9, |
||
10, -12, -13, 15, 16, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 1]</nowiki></pre></td></tr> |
10, -12, -13, 15, 16, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 1]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[8, 3]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[8, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[8, 3]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[8, 3]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -6 -4 -3 1 3 4 6 7 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -6 -4 -3 1 3 4 6 7 |
||
-1 + t - t + t - t + - + t - t + t - t + t |
-1 + t - t + t - t + - + t - t + t - t + t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[8, 3]][z]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[8, 3]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 14 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 14 |
||
1 + 21 z + 105 z + 189 z + 157 z + 65 z + 13 z + z</nowiki></pre></td></tr> |
1 + 21 z + 105 z + 189 z + 157 z + 65 z + 13 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[8, 3]], KnotSignature[TorusKnot[8, 3]]}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[8, 3]], KnotSignature[TorusKnot[8, 3]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[8, 3]][q]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[8, 3]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7 9 16 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7 9 16 |
||
q + q - q</nowiki></pre></td></tr> |
q + q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
Include |
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[8, 3]][q]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[8, 3]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[8, 3]][a, z]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[8, 3]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 3 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 3 |
||
-7 21 15 21 z 21 z 21 z 126 z 105 z 105 z |
-7 21 15 21 z 21 z 21 z 126 z 105 z 105 z |
||
--- - --- - --- + ---- + ---- + ----- + ------ + ------ - ------ - |
--- - --- - --- + ---- + ---- + ----- + ------ + ------ - ------ - |
||
Line 143: | Line 139: | ||
16 14 |
16 14 |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[8, 3]], Vassiliev[3][TorusKnot[8, 3]]}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[8, 3]], Vassiliev[3][TorusKnot[8, 3]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 84}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 84}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[8, 3]][q, t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[8, 3]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 13 15 17 2 21 3 19 4 21 4 23 5 25 5 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 13 15 17 2 21 3 19 4 21 4 23 5 25 5 |
||
q + q + q t + q t + q t + q t + q t + q t + |
q + q + q t + q t + q t + q t + q t + q t + |
||
Revision as of 20:24, 27 August 2005
|
|
Visit T(8,3)'s page at Knotilus!
Visit T(8,3)'s page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X11,1,12,32 X22,2,23,1 X23,13,24,12 X2,14,3,13 X3,25,4,24 X14,26,15,25 X15,5,16,4 X26,6,27,5 X27,17,28,16 X6,18,7,17 X7,29,8,28 X18,30,19,29 X19,9,20,8 X30,10,31,9 X31,21,32,20 X10,22,11,21 |
Gauss code | 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 1 |
Dowker-Thistlethwaite code | 22 -24 26 -28 30 -32 2 -4 6 -8 10 -12 14 -16 18 -20 |
Conway Notation | Data:T(8,3)/Conway Notation |
Knot presentations
Planar diagram presentation | X11,1,12,32 X22,2,23,1 X23,13,24,12 X2,14,3,13 X3,25,4,24 X14,26,15,25 X15,5,16,4 X26,6,27,5 X27,17,28,16 X6,18,7,17 X7,29,8,28 X18,30,19,29 X19,9,20,8 X30,10,31,9 X31,21,32,20 X10,22,11,21 |
Gauss code | |
Dowker-Thistlethwaite code | 22 -24 26 -28 30 -32 2 -4 6 -8 10 -12 14 -16 18 -20 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(8,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, 10 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (21, 84) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 10 is the signature of T(8,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | χ | |||||||||
33 | 1 | -1 | ||||||||||||||||||||
31 | 1 | -1 | ||||||||||||||||||||
29 | 1 | 1 | 0 | |||||||||||||||||||
27 | 1 | 1 | 0 | |||||||||||||||||||
25 | 1 | 1 | 0 | |||||||||||||||||||
23 | 1 | 1 | 0 | |||||||||||||||||||
21 | 1 | 1 | 0 | |||||||||||||||||||
19 | 1 | 1 | ||||||||||||||||||||
17 | 1 | 1 | ||||||||||||||||||||
15 | 1 | 1 | ||||||||||||||||||||
13 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[8, 3]] |
Out[2]= | 16 |
In[3]:= | PD[TorusKnot[8, 3]] |
Out[3]= | PD[X[11, 1, 12, 32], X[22, 2, 23, 1], X[23, 13, 24, 12],X[2, 14, 3, 13], X[3, 25, 4, 24], X[14, 26, 15, 25], X[15, 5, 16, 4], X[26, 6, 27, 5], X[27, 17, 28, 16], X[6, 18, 7, 17], X[7, 29, 8, 28], X[18, 30, 19, 29], X[19, 9, 20, 8], X[30, 10, 31, 9],X[31, 21, 32, 20], X[10, 22, 11, 21]] |
In[4]:= | GaussCode[TorusKnot[8, 3]] |
Out[4]= | GaussCode[2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 1] |
In[5]:= | BR[TorusKnot[8, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[8, 3]][t] |
Out[6]= | -7 -6 -4 -3 1 3 4 6 7 |
In[7]:= | Conway[TorusKnot[8, 3]][z] |
Out[7]= | 2 4 6 8 10 12 14 1 + 21 z + 105 z + 189 z + 157 z + 65 z + 13 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[8, 3]], KnotSignature[TorusKnot[8, 3]]} |
Out[9]= | {3, 10} |
In[10]:= | J=Jones[TorusKnot[8, 3]][q] |
Out[10]= | 7 9 16 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[8, 3]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[8, 3]][a, z] |
Out[13]= | 2 2 2 3 |
In[14]:= | {Vassiliev[2][TorusKnot[8, 3]], Vassiliev[3][TorusKnot[8, 3]]} |
Out[14]= | {0, 84} |
In[15]:= | Kh[TorusKnot[8, 3]][q, t] |
Out[15]= | 13 15 17 2 21 3 19 4 21 4 23 5 25 5 |