|
|
Line 12: |
Line 12: |
|
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-2,3,-1,2,-3,1/goTop.html {{PAGENAME}}'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
|
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-2,3,-1,2,-3,1/goTop.html {{PAGENAME}}'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
|
|
|
|
|
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/<math>3</math>.<math>2</math>.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/3.2.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|
|
|
|
|
{{:{{PAGENAME}} Quick Notes}} |
|
{{:{{PAGENAME}} Quick Notes}} |
Revision as of 20:19, 27 August 2005
T(3,2) Further Notes and Views
Knot presentations
Knot presentations
Planar diagram presentation
|
X3146 X1524 X5362
|
Gauss code
|
|
Dowker-Thistlethwaite code
|
4 6 2
|
Polynomial invariants
Further Quantum Invariants
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["T(3,2)"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
Data:T(3,2)/V 2,1
|
Data:T(3,2)/V 3,1
|
Data:T(3,2)/V 4,1
|
Data:T(3,2)/V 4,2
|
Data:T(3,2)/V 4,3
|
Data:T(3,2)/V 5,1
|
Data:T(3,2)/V 5,2
|
Data:T(3,2)/V 5,3
|
Data:T(3,2)/V 5,4
|
Data:T(3,2)/V 6,1
|
Data:T(3,2)/V 6,2
|
Data:T(3,2)/V 6,3
|
Data:T(3,2)/V 6,4
|
Data:T(3,2)/V 6,5
|
Data:T(3,2)/V 6,6
|
Data:T(3,2)/V 6,7
|
Data:T(3,2)/V 6,8
|
Data:T(3,2)/V 6,9
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of T(3,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | χ |
9 | | | | 1 | -1 |
7 | | | | | 0 |
5 | | | 1 | | 1 |
3 | 1 | | | | 1 |
1 | 1 | | | | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[TorusKnot[3, 2]] |
Out[2]= | 3 |
In[3]:= | PD[TorusKnot[3, 2]] |
Out[3]= | PD[X[3, 1, 4, 6], X[1, 5, 2, 4], X[5, 3, 6, 2]] |
In[4]:= | GaussCode[TorusKnot[3, 2]] |
Out[4]= | GaussCode[-2, 3, -1, 2, -3, 1] |
In[5]:= | BR[TorusKnot[3, 2]] |
Out[5]= | BR[2, {1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[3, 2]][t] |
Out[6]= | 1
-1 + - + t
t |
In[7]:= | Conway[TorusKnot[3, 2]][z] |
Out[7]= | 2
1 + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[3, 1]} |
In[9]:= | {KnotDet[TorusKnot[3, 2]], KnotSignature[TorusKnot[3, 2]]} |
Out[9]= | {3, 2} |
In[10]:= | J=Jones[TorusKnot[3, 2]][q] |
Out[10]= | 3 4
q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[3, 1]} |
In[12]:= | A2Invariant[TorusKnot[3, 2]][q] |
Out[12]= | 2 4 6 8 12 14
q + q + 2 q + q - q - q |
In[13]:= | Kauffman[TorusKnot[3, 2]][a, z] |
Out[13]= | 2 2
-4 2 z z z z
-a - -- + -- + -- + -- + --
2 5 3 4 2
a a a a a |
In[14]:= | {Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]} |
Out[14]= | {0, 1} |
In[15]:= | Kh[TorusKnot[3, 2]][q, t] |
Out[15]= | 3 5 2 9 3
q + q + q t + q t |