10 154: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_154}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=154|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,3,-9,10,-2,-4,8,9,-3,-6,7,-8,4,-5,6,-7,5/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=6.66667%>8</td ><td width=6.66667%>9</td ><td width=6.66667%>10</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>25</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>7</td><td bgcolor=red>1</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 154]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 154]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[9, 17, 10, 16], |
|||
X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14], |
|||
X[15, 11, 16, 10], X[6, 12, 7, 11], X[2, 8, 3, 7]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 154]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 3, -9, 10, -2, -4, 8, 9, -3, -6, 7, -8, 4, -5, |
|||
6, -7, 5]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 154]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 2, -1, 2, 1, 3, 2, 2, 2, 3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 154]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 3 |
|||
7 + t - - - 4 t + t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 154]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 5 z + 6 z + z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 154]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 154]], KnotSignature[Knot[10, 154]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{13, 4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 154]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 6 7 8 9 10 11 12 |
|||
q + 2 q - 2 q + 2 q - 3 q + 2 q - 2 q + q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 154]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 154]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 12 14 16 18 22 24 26 28 30 |
|||
q + q + q + 2 q + 2 q + q - q - q - 2 q - 2 q - |
|||
34 36 38 |
|||
q + q + q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 154]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
|||
-12 2 2 4 4 z 10 z 3 z 3 z 3 z 2 z 5 z |
|||
a + --- - -- - -- - --- - ---- - --- + --- + ---- + ---- - ---- + |
|||
10 8 6 13 11 9 7 14 12 10 |
|||
a a a a a a a a a a |
|||
2 2 3 3 3 3 4 4 4 |
|||
5 z 9 z 10 z 21 z 9 z 2 z 4 z z 7 z |
|||
---- + ---- + ----- + ----- + ---- - ---- - ---- - --- + ---- - |
|||
8 6 13 11 9 7 14 12 10 |
|||
a a a a a a a a a |
|||
4 4 5 5 5 6 6 6 6 7 |
|||
2 z 6 z 9 z 15 z 6 z z 3 z 5 z z 2 z |
|||
---- - ---- - ---- - ----- - ---- + --- - ---- - ---- + -- + ---- + |
|||
8 6 13 11 9 14 12 10 6 13 |
|||
a a a a a a a a a a |
|||
7 7 8 8 |
|||
3 z z z z |
|||
---- + -- + --- + --- |
|||
11 9 12 10 |
|||
a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 154]], Vassiliev[3][Knot[10, 154]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 9}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 154]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 9 2 9 3 13 3 11 4 13 4 13 5 |
|||
q + q + q t + q t + q t + 2 q t + 2 q t + q t + |
|||
15 5 17 5 15 6 17 6 17 7 19 7 19 8 |
|||
2 q t + q t + 2 q t + q t + q t + 2 q t + q t + |
|||
21 8 21 9 23 9 25 10 |
|||
q t + q t + q t + q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 20:45, 27 August 2005
|
|
|
|
Visit 10 154's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 154's page at Knotilus! Visit 10 154's page at the original Knot Atlas! |
10 154 Quick Notes |
10 154 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X8493 X12,6,13,5 X9,17,10,16 X17,1,18,20 X13,19,14,18 X19,15,20,14 X15,11,16,10 X6,12,7,11 X2837 |
| Gauss code | 1, -10, 2, -1, 3, -9, 10, -2, -4, 8, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5 |
| Dowker-Thistlethwaite code | 4 8 12 2 -16 6 -18 -10 -20 -14 |
| Conway Notation | [(21,2)-(21,2)] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-4 t+7-4 t^{-1} + t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+6 z^4+5 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 13, 4 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-2 q^{11}+2 q^{10}-3 q^9+2 q^8-2 q^7+2 q^6+q^3} |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-6} +6 z^4 a^{-6} +9 z^2 a^{-6} -2 z^2 a^{-8} -2 z^2 a^{-10} +4 a^{-6} -2 a^{-8} -2 a^{-10} + a^{-12} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-10} +z^8 a^{-12} +z^7 a^{-9} +3 z^7 a^{-11} +2 z^7 a^{-13} +z^6 a^{-6} -5 z^6 a^{-10} -3 z^6 a^{-12} +z^6 a^{-14} -6 z^5 a^{-9} -15 z^5 a^{-11} -9 z^5 a^{-13} -6 z^4 a^{-6} -2 z^4 a^{-8} +7 z^4 a^{-10} -z^4 a^{-12} -4 z^4 a^{-14} -2 z^3 a^{-7} +9 z^3 a^{-9} +21 z^3 a^{-11} +10 z^3 a^{-13} +9 z^2 a^{-6} +5 z^2 a^{-8} -5 z^2 a^{-10} +2 z^2 a^{-12} +3 z^2 a^{-14} +3 z a^{-7} -3 z a^{-9} -10 z a^{-11} -4 z a^{-13} -4 a^{-6} -2 a^{-8} +2 a^{-10} + a^{-12} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} + q^{-12} + q^{-14} +2 q^{-16} +2 q^{-18} + q^{-22} - q^{-24} - q^{-26} -2 q^{-28} -2 q^{-30} - q^{-34} + q^{-36} + q^{-38} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-50} + q^{-52} +2 q^{-56} + q^{-58} +3 q^{-62} + q^{-66} +3 q^{-68} -2 q^{-70} +3 q^{-72} +3 q^{-74} -4 q^{-76} +7 q^{-78} -5 q^{-80} +2 q^{-82} +5 q^{-84} -7 q^{-86} +9 q^{-88} -4 q^{-90} -4 q^{-92} +8 q^{-94} -5 q^{-96} +7 q^{-100} -10 q^{-102} +8 q^{-104} -2 q^{-106} -6 q^{-108} +8 q^{-110} -9 q^{-112} +6 q^{-114} -5 q^{-116} -2 q^{-118} + q^{-120} -3 q^{-122} -6 q^{-126} -2 q^{-130} -2 q^{-132} + q^{-134} -4 q^{-136} -2 q^{-138} +8 q^{-140} -10 q^{-142} +6 q^{-144} -7 q^{-148} +14 q^{-150} -10 q^{-152} +6 q^{-154} +4 q^{-156} -5 q^{-158} +8 q^{-160} -3 q^{-162} - q^{-164} +6 q^{-166} -4 q^{-168} +3 q^{-172} -5 q^{-174} +6 q^{-176} -4 q^{-178} - q^{-180} + q^{-182} -3 q^{-184} +2 q^{-186} - q^{-188} + q^{-190} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-5} + q^{-7} +2 q^{-11} - q^{-17} - q^{-19} - q^{-23} + q^{-25} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} + q^{-12} + q^{-14} +3 q^{-20} +2 q^{-22} -2 q^{-24} + q^{-26} +2 q^{-28} -2 q^{-30} -3 q^{-32} -2 q^{-38} -2 q^{-40} +2 q^{-42} - q^{-44} -2 q^{-46} +4 q^{-48} -2 q^{-52} +2 q^{-54} +2 q^{-56} - q^{-58} -2 q^{-60} + q^{-62} +2 q^{-64} -2 q^{-66} - q^{-68} + q^{-70} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-15} + q^{-17} + q^{-19} + q^{-21} +3 q^{-29} +3 q^{-31} +3 q^{-33} -2 q^{-35} -4 q^{-37} - q^{-39} +6 q^{-41} +8 q^{-43} -6 q^{-45} -15 q^{-47} -2 q^{-49} +14 q^{-51} +6 q^{-53} -16 q^{-55} -12 q^{-57} +8 q^{-59} +10 q^{-61} -2 q^{-63} -8 q^{-65} +4 q^{-69} +3 q^{-71} -2 q^{-73} -3 q^{-75} + q^{-77} +6 q^{-79} -6 q^{-83} +2 q^{-85} +11 q^{-87} -12 q^{-91} -4 q^{-93} +12 q^{-95} +8 q^{-97} -11 q^{-99} -12 q^{-101} +2 q^{-103} +11 q^{-105} +4 q^{-107} -6 q^{-109} -6 q^{-111} +5 q^{-115} +4 q^{-117} - q^{-119} -4 q^{-121} -3 q^{-123} +3 q^{-125} +3 q^{-127} -2 q^{-131} - q^{-133} + q^{-135} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} + q^{-12} + q^{-14} +2 q^{-16} +2 q^{-18} + q^{-22} - q^{-24} - q^{-26} -2 q^{-28} -2 q^{-30} - q^{-34} + q^{-36} + q^{-38} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} +2 q^{-22} +2 q^{-24} +6 q^{-26} +5 q^{-28} +4 q^{-30} +8 q^{-32} -4 q^{-34} +12 q^{-36} -8 q^{-38} +2 q^{-40} -6 q^{-42} -14 q^{-44} +8 q^{-46} -20 q^{-48} +6 q^{-50} -8 q^{-52} -2 q^{-54} +8 q^{-56} -8 q^{-58} +14 q^{-60} -8 q^{-62} +12 q^{-64} -6 q^{-66} +3 q^{-68} -8 q^{-72} +16 q^{-74} -21 q^{-76} +22 q^{-78} -16 q^{-80} +12 q^{-82} -2 q^{-84} -8 q^{-86} +10 q^{-88} -12 q^{-90} +11 q^{-92} -8 q^{-94} +4 q^{-96} -2 q^{-98} + q^{-100} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} + q^{-22} +2 q^{-24} + q^{-26} + q^{-28} +3 q^{-30} +5 q^{-32} +2 q^{-34} +2 q^{-36} +3 q^{-38} +3 q^{-40} + q^{-42} -2 q^{-44} -3 q^{-46} -3 q^{-48} -4 q^{-50} -4 q^{-52} -8 q^{-54} -6 q^{-56} -3 q^{-58} - q^{-60} - q^{-62} +3 q^{-64} +6 q^{-66} +4 q^{-68} +4 q^{-70} +2 q^{-74} + q^{-78} - q^{-80} - q^{-82} + q^{-84} -2 q^{-88} -3 q^{-90} + q^{-94} + q^{-96} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} + q^{-22} +2 q^{-24} +3 q^{-26} +5 q^{-28} +3 q^{-30} +5 q^{-32} +2 q^{-34} -2 q^{-40} -3 q^{-42} -4 q^{-44} -4 q^{-46} -4 q^{-48} -6 q^{-50} -4 q^{-52} - q^{-54} +3 q^{-58} +6 q^{-60} +4 q^{-62} +2 q^{-64} +2 q^{-66} -2 q^{-68} - q^{-70} -2 q^{-72} - q^{-78} + q^{-80} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-15} + q^{-17} + q^{-19} +3 q^{-21} +2 q^{-23} +2 q^{-25} + q^{-27} + q^{-29} - q^{-31} - q^{-33} -2 q^{-35} -2 q^{-37} -2 q^{-39} -2 q^{-41} - q^{-45} + q^{-47} + q^{-49} + q^{-51} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} + q^{-34} + q^{-36} + q^{-38} +3 q^{-42} +2 q^{-44} +2 q^{-46} + q^{-48} +2 q^{-50} +3 q^{-52} + q^{-54} -2 q^{-56} + q^{-58} +2 q^{-60} -3 q^{-64} -2 q^{-66} - q^{-70} -4 q^{-72} -4 q^{-74} - q^{-76} - q^{-78} -2 q^{-80} -4 q^{-82} -2 q^{-84} + q^{-86} + q^{-88} - q^{-90} +2 q^{-94} +4 q^{-96} +2 q^{-98} + q^{-102} +4 q^{-104} + q^{-106} -2 q^{-108} -2 q^{-110} + q^{-112} + q^{-114} -2 q^{-116} -2 q^{-118} + q^{-120} + q^{-122} - q^{-124} - q^{-126} + q^{-130} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} + q^{-32} + q^{-34} +4 q^{-36} +3 q^{-38} +5 q^{-40} +5 q^{-42} +5 q^{-44} +3 q^{-46} +2 q^{-48} +2 q^{-50} -3 q^{-52} -4 q^{-56} -5 q^{-60} - q^{-62} -4 q^{-64} -3 q^{-66} -5 q^{-68} -6 q^{-70} -4 q^{-72} -5 q^{-74} + q^{-76} -3 q^{-78} +5 q^{-80} +2 q^{-82} +8 q^{-84} +2 q^{-86} +5 q^{-88} + q^{-92} -2 q^{-96} - q^{-98} -3 q^{-100} +2 q^{-102} -2 q^{-104} + q^{-106} - q^{-108} + q^{-110} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-50} + q^{-52} +2 q^{-56} + q^{-58} +3 q^{-62} + q^{-66} +3 q^{-68} -2 q^{-70} +3 q^{-72} +3 q^{-74} -4 q^{-76} +7 q^{-78} -5 q^{-80} +2 q^{-82} +5 q^{-84} -7 q^{-86} +9 q^{-88} -4 q^{-90} -4 q^{-92} +8 q^{-94} -5 q^{-96} +7 q^{-100} -10 q^{-102} +8 q^{-104} -2 q^{-106} -6 q^{-108} +8 q^{-110} -9 q^{-112} +6 q^{-114} -5 q^{-116} -2 q^{-118} + q^{-120} -3 q^{-122} -6 q^{-126} -2 q^{-130} -2 q^{-132} + q^{-134} -4 q^{-136} -2 q^{-138} +8 q^{-140} -10 q^{-142} +6 q^{-144} -7 q^{-148} +14 q^{-150} -10 q^{-152} +6 q^{-154} +4 q^{-156} -5 q^{-158} +8 q^{-160} -3 q^{-162} - q^{-164} +6 q^{-166} -4 q^{-168} +3 q^{-172} -5 q^{-174} +6 q^{-176} -4 q^{-178} - q^{-180} + q^{-182} -3 q^{-184} +2 q^{-186} - q^{-188} + q^{-190} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 154"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-4 t+7-4 t^{-1} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+6 z^4+5 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 13, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-2 q^{11}+2 q^{10}-3 q^9+2 q^8-2 q^7+2 q^6+q^3} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-6} +6 z^4 a^{-6} +9 z^2 a^{-6} -2 z^2 a^{-8} -2 z^2 a^{-10} +4 a^{-6} -2 a^{-8} -2 a^{-10} + a^{-12} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-10} +z^8 a^{-12} +z^7 a^{-9} +3 z^7 a^{-11} +2 z^7 a^{-13} +z^6 a^{-6} -5 z^6 a^{-10} -3 z^6 a^{-12} +z^6 a^{-14} -6 z^5 a^{-9} -15 z^5 a^{-11} -9 z^5 a^{-13} -6 z^4 a^{-6} -2 z^4 a^{-8} +7 z^4 a^{-10} -z^4 a^{-12} -4 z^4 a^{-14} -2 z^3 a^{-7} +9 z^3 a^{-9} +21 z^3 a^{-11} +10 z^3 a^{-13} +9 z^2 a^{-6} +5 z^2 a^{-8} -5 z^2 a^{-10} +2 z^2 a^{-12} +3 z^2 a^{-14} +3 z a^{-7} -3 z a^{-9} -10 z a^{-11} -4 z a^{-13} -4 a^{-6} -2 a^{-8} +2 a^{-10} + a^{-12} } |
Vassiliev invariants
| V2 and V3: | (5, 9) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 10 154. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | χ | |||||||||
| 25 | 1 | 1 | |||||||||||||||||||
| 23 | 1 | -1 | |||||||||||||||||||
| 21 | 1 | 1 | 0 | ||||||||||||||||||
| 19 | 2 | 1 | -1 | ||||||||||||||||||
| 17 | 1 | 1 | 1 | -1 | |||||||||||||||||
| 15 | 2 | 2 | 0 | ||||||||||||||||||
| 13 | 1 | 2 | 1 | 0 | |||||||||||||||||
| 11 | 2 | 2 | |||||||||||||||||||
| 9 | 1 | 1 | 0 | ||||||||||||||||||
| 7 | 1 | 1 | |||||||||||||||||||
| 5 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 154]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 154]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[9, 17, 10, 16],X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14],X[15, 11, 16, 10], X[6, 12, 7, 11], X[2, 8, 3, 7]] |
In[4]:= | GaussCode[Knot[10, 154]] |
Out[4]= | GaussCode[1, -10, 2, -1, 3, -9, 10, -2, -4, 8, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5] |
In[5]:= | BR[Knot[10, 154]] |
Out[5]= | BR[4, {1, 1, 2, -1, 2, 1, 3, 2, 2, 2, 3}] |
In[6]:= | alex = Alexander[Knot[10, 154]][t] |
Out[6]= | -3 4 3 |
In[7]:= | Conway[Knot[10, 154]][z] |
Out[7]= | 2 4 6 1 + 5 z + 6 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 154]} |
In[9]:= | {KnotDet[Knot[10, 154]], KnotSignature[Knot[10, 154]]} |
Out[9]= | {13, 4} |
In[10]:= | J=Jones[Knot[10, 154]][q] |
Out[10]= | 3 6 7 8 9 10 11 12 q + 2 q - 2 q + 2 q - 3 q + 2 q - 2 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 154]} |
In[12]:= | A2Invariant[Knot[10, 154]][q] |
Out[12]= | 10 12 14 16 18 22 24 26 28 30 |
In[13]:= | Kauffman[Knot[10, 154]][a, z] |
Out[13]= | 2 2 2-12 2 2 4 4 z 10 z 3 z 3 z 3 z 2 z 5 z |
In[14]:= | {Vassiliev[2][Knot[10, 154]], Vassiliev[3][Knot[10, 154]]} |
Out[14]= | {0, 9} |
In[15]:= | Kh[Knot[10, 154]][q, t] |
Out[15]= | 5 7 9 2 9 3 13 3 11 4 13 4 13 5 |


