10 84: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_84}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=84|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,5,-9,7,-3,10,-2,3,-6,8,-7,4,-5,6,-8,9,-4/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>3</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>1</td><td> </td><td>-4</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>3</td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>8</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>5</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 84]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 84]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[8, 12, 9, 11], X[20, 15, 1, 16], |
|||
X[16, 5, 17, 6], X[12, 18, 13, 17], X[14, 8, 15, 7], |
|||
X[18, 14, 19, 13], X[6, 19, 7, 20], X[2, 10, 3, 9]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 84]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 5, -9, 7, -3, 10, -2, 3, -6, 8, -7, 4, -5, 6, |
|||
-8, 9, -4]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 84]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, 2, -1, -3, 2, 2, -3, 2, -3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 84]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 9 20 2 3 |
|||
-25 + -- - -- + -- + 20 t - 9 t + 2 t |
|||
3 2 t |
|||
t t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 84]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 2 z + 3 z + 2 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 84], Knot[11, Alternating, 46], Knot[11, NonAlternating, 184]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 84]], KnotSignature[Knot[10, 84]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{87, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 84]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2 3 4 5 6 7 8 |
|||
-6 - q + - + 11 q - 13 q + 15 q - 14 q + 11 q - 8 q + 4 q - q |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 84]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 84]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -4 -2 2 4 6 8 10 12 14 |
|||
-1 - q + q - q + 4 q - q + 4 q + q - q + q - 4 q + |
|||
16 18 20 22 24 |
|||
2 q - q - q + 2 q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 84]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 3 |
|||
2 4 z 2 z 2 z 2 z z z 7 z z |
|||
-1 - -- - -- - -- + --- + --- + a z + 4 z + -- - -- + -- + ---- - -- + |
|||
4 2 7 3 a 8 6 4 2 9 |
|||
a a a a a a a a a |
|||
3 3 3 3 4 4 4 |
|||
6 z 11 z 4 z 2 z 3 4 6 z 2 z 9 z |
|||
---- + ----- + ---- - ---- - 2 a z - 6 z - ---- + ---- + ---- - |
|||
7 5 3 a 8 6 4 |
|||
a a a a a a |
|||
4 5 5 5 5 5 6 |
|||
5 z z 13 z 20 z 11 z 4 z 5 6 4 z |
|||
---- + -- - ----- - ----- - ----- - ---- + a z + 3 z + ---- - |
|||
2 9 7 5 3 a 8 |
|||
a a a a a a |
|||
6 6 6 7 7 7 7 8 8 |
|||
8 z 17 z 2 z 7 z 8 z 5 z 4 z 6 z 10 z |
|||
---- - ----- - ---- + ---- + ---- + ---- + ---- + ---- + ----- + |
|||
6 4 2 7 5 3 a 6 4 |
|||
a a a a a a a a |
|||
8 9 9 |
|||
4 z 2 z 2 z |
|||
---- + ---- + ---- |
|||
2 5 3 |
|||
a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 84]], Vassiliev[3][Knot[10, 84]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 84]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 2 1 4 2 q 3 5 |
|||
7 q + 5 q + ----- + ----- + ---- + --- + --- + 7 q t + 6 q t + |
|||
5 3 3 2 2 q t t |
|||
q t q t q t |
|||
5 2 7 2 7 3 9 3 9 4 11 4 |
|||
8 q t + 7 q t + 6 q t + 8 q t + 5 q t + 6 q t + |
|||
11 5 13 5 13 6 15 6 17 7 |
|||
3 q t + 5 q t + q t + 3 q t + q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 20:52, 27 August 2005
|
|
|
|
Visit 10 84's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 84's page at Knotilus! Visit 10 84's page at the original Knot Atlas! |
10 84 Quick Notes |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X8,12,9,11 X20,15,1,16 X16,5,17,6 X12,18,13,17 X14,8,15,7 X18,14,19,13 X6,19,7,20 X2,10,3,9 |
| Gauss code | 1, -10, 2, -1, 5, -9, 7, -3, 10, -2, 3, -6, 8, -7, 4, -5, 6, -8, 9, -4 |
| Dowker-Thistlethwaite code | 4 10 16 14 2 8 18 20 12 6 |
| Conway Notation | [.22.2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 2 t^3-9 t^2+20 t-25+20 t^{-1} -9 t^{-2} +2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ 2 z^6+3 z^4+2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 87, 2 } |
| Jones polynomial | [math]\displaystyle{ -q^8+4 q^7-8 q^6+11 q^5-14 q^4+15 q^3-13 q^2+11 q-6+3 q^{-1} - q^{-2} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^6 a^{-2} +z^6 a^{-4} +3 z^4 a^{-2} +2 z^4 a^{-4} -z^4 a^{-6} -z^4+5 z^2 a^{-2} -z^2 a^{-6} -2 z^2+4 a^{-2} -2 a^{-4} -1 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^9 a^{-3} +2 z^9 a^{-5} +4 z^8 a^{-2} +10 z^8 a^{-4} +6 z^8 a^{-6} +4 z^7 a^{-1} +5 z^7 a^{-3} +8 z^7 a^{-5} +7 z^7 a^{-7} -2 z^6 a^{-2} -17 z^6 a^{-4} -8 z^6 a^{-6} +4 z^6 a^{-8} +3 z^6+a z^5-4 z^5 a^{-1} -11 z^5 a^{-3} -20 z^5 a^{-5} -13 z^5 a^{-7} +z^5 a^{-9} -5 z^4 a^{-2} +9 z^4 a^{-4} +2 z^4 a^{-6} -6 z^4 a^{-8} -6 z^4-2 a z^3-2 z^3 a^{-1} +4 z^3 a^{-3} +11 z^3 a^{-5} +6 z^3 a^{-7} -z^3 a^{-9} +7 z^2 a^{-2} +z^2 a^{-4} -z^2 a^{-6} +z^2 a^{-8} +4 z^2+a z+2 z a^{-1} +2 z a^{-3} -z a^{-7} -4 a^{-2} -2 a^{-4} -1 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^6+q^4-q^2-1+4 q^{-2} - q^{-4} +4 q^{-6} + q^{-8} - q^{-10} + q^{-12} -4 q^{-14} +2 q^{-16} - q^{-18} - q^{-20} +2 q^{-22} - q^{-24} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{32}-2 q^{30}+5 q^{28}-8 q^{26}+8 q^{24}-7 q^{22}-2 q^{20}+15 q^{18}-30 q^{16}+43 q^{14}-49 q^{12}+39 q^{10}-14 q^8-31 q^6+88 q^4-135 q^2+155-130 q^{-2} +45 q^{-4} +73 q^{-6} -192 q^{-8} +270 q^{-10} -257 q^{-12} +158 q^{-14} +9 q^{-16} -171 q^{-18} +266 q^{-20} -245 q^{-22} +128 q^{-24} +45 q^{-26} -178 q^{-28} +213 q^{-30} -130 q^{-32} -29 q^{-34} +208 q^{-36} -308 q^{-38} +285 q^{-40} -137 q^{-42} -84 q^{-44} +291 q^{-46} -414 q^{-48} +398 q^{-50} -255 q^{-52} +33 q^{-54} +188 q^{-56} -340 q^{-58} +366 q^{-60} -262 q^{-62} +73 q^{-64} +112 q^{-66} -230 q^{-68} +224 q^{-70} -106 q^{-72} -61 q^{-74} +203 q^{-76} -245 q^{-78} +172 q^{-80} -12 q^{-82} -172 q^{-84} +292 q^{-86} -302 q^{-88} +206 q^{-90} -47 q^{-92} -113 q^{-94} +215 q^{-96} -231 q^{-98} +180 q^{-100} -86 q^{-102} -8 q^{-104} +69 q^{-106} -96 q^{-108} +82 q^{-110} -51 q^{-112} +23 q^{-114} +2 q^{-116} -13 q^{-118} +15 q^{-120} -13 q^{-122} +7 q^{-124} -3 q^{-126} + q^{-128} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^5+2 q^3-3 q+5 q^{-1} -2 q^{-3} +2 q^{-5} + q^{-7} -3 q^{-9} +3 q^{-11} -4 q^{-13} +3 q^{-15} - q^{-17} }[/math] |
| 2 | [math]\displaystyle{ q^{16}-2 q^{14}-q^{12}+6 q^{10}-8 q^8-4 q^6+22 q^4-15 q^2-19+40 q^{-2} -7 q^{-4} -35 q^{-6} +33 q^{-8} +10 q^{-10} -30 q^{-12} +6 q^{-14} +19 q^{-16} -7 q^{-18} -23 q^{-20} +19 q^{-22} +19 q^{-24} -39 q^{-26} +8 q^{-28} +35 q^{-30} -33 q^{-32} -8 q^{-34} +31 q^{-36} -12 q^{-38} -12 q^{-40} +11 q^{-42} -3 q^{-46} + q^{-48} }[/math] |
| 3 | [math]\displaystyle{ -q^{33}+2 q^{31}+q^{29}-2 q^{27}-3 q^{25}+5 q^{23}+4 q^{21}-15 q^{19}-7 q^{17}+30 q^{15}+22 q^{13}-55 q^{11}-56 q^9+77 q^7+116 q^5-81 q^3-185 q+47 q^{-1} +263 q^{-3} +12 q^{-5} -297 q^{-7} -98 q^{-9} +294 q^{-11} +178 q^{-13} -248 q^{-15} -228 q^{-17} +171 q^{-19} +247 q^{-21} -81 q^{-23} -235 q^{-25} -9 q^{-27} +207 q^{-29} +85 q^{-31} -161 q^{-33} -167 q^{-35} +116 q^{-37} +228 q^{-39} -55 q^{-41} -284 q^{-43} -10 q^{-45} +310 q^{-47} +90 q^{-49} -299 q^{-51} -166 q^{-53} +253 q^{-55} +216 q^{-57} -172 q^{-59} -232 q^{-61} +80 q^{-63} +207 q^{-65} -5 q^{-67} -155 q^{-69} -34 q^{-71} +89 q^{-73} +47 q^{-75} -40 q^{-77} -36 q^{-79} +15 q^{-81} +16 q^{-83} -2 q^{-85} -7 q^{-87} +3 q^{-91} - q^{-93} }[/math] |
| 4 | [math]\displaystyle{ q^{56}-2 q^{54}-q^{52}+2 q^{50}-q^{48}+6 q^{46}-5 q^{44}+9 q^{40}-14 q^{38}-q^{36}-23 q^{34}+22 q^{32}+77 q^{30}-9 q^{28}-67 q^{26}-171 q^{24}-2 q^{22}+301 q^{20}+235 q^{18}-56 q^{16}-607 q^{14}-444 q^{12}+443 q^{10}+925 q^8+579 q^6-930 q^4-1509 q^2-245+1445 q^{-2} +1983 q^{-4} -232 q^{-6} -2323 q^{-8} -1791 q^{-10} +793 q^{-12} +3002 q^{-14} +1352 q^{-16} -1799 q^{-18} -2874 q^{-20} -729 q^{-22} +2579 q^{-24} +2432 q^{-26} -351 q^{-28} -2573 q^{-30} -1800 q^{-32} +1199 q^{-34} +2311 q^{-36} +854 q^{-38} -1459 q^{-40} -1961 q^{-42} -114 q^{-44} +1595 q^{-46} +1507 q^{-48} -353 q^{-50} -1761 q^{-52} -1176 q^{-54} +880 q^{-56} +2026 q^{-58} +701 q^{-60} -1513 q^{-62} -2235 q^{-64} -9 q^{-66} +2367 q^{-68} +1922 q^{-70} -797 q^{-72} -2995 q^{-74} -1313 q^{-76} +1876 q^{-78} +2831 q^{-80} +610 q^{-82} -2624 q^{-84} -2367 q^{-86} +390 q^{-88} +2514 q^{-90} +1840 q^{-92} -1100 q^{-94} -2163 q^{-96} -965 q^{-98} +1077 q^{-100} +1793 q^{-102} +276 q^{-104} -940 q^{-106} -1105 q^{-108} -115 q^{-110} +828 q^{-112} +531 q^{-114} -8 q^{-116} -475 q^{-118} -325 q^{-120} +130 q^{-122} +200 q^{-124} +148 q^{-126} -69 q^{-128} -119 q^{-130} -12 q^{-132} +15 q^{-134} +46 q^{-136} +2 q^{-138} -19 q^{-140} -2 q^{-142} -2 q^{-144} +7 q^{-146} -3 q^{-150} + q^{-152} }[/math] |
| 5 | [math]\displaystyle{ -q^{85}+2 q^{83}+q^{81}-2 q^{79}+q^{77}-2 q^{75}-6 q^{73}+q^{71}+6 q^{69}+q^{67}+13 q^{65}+13 q^{63}-14 q^{61}-35 q^{59}-39 q^{57}-13 q^{55}+64 q^{53}+142 q^{51}+100 q^{49}-98 q^{47}-311 q^{45}-330 q^{43}-q^{41}+549 q^{39}+850 q^{37}+387 q^{35}-741 q^{33}-1659 q^{31}-1355 q^{29}+479 q^{27}+2674 q^{25}+3154 q^{23}+695 q^{21}-3376 q^{19}-5677 q^{17}-3348 q^{15}+2943 q^{13}+8388 q^{11}+7598 q^9-475 q^7-10214 q^5-12893 q^3-4415 q+9795 q^{-1} +17931 q^{-3} +11490 q^{-5} -6365 q^{-7} -21186 q^{-9} -19189 q^{-11} -93 q^{-13} +21141 q^{-15} +25898 q^{-17} +8431 q^{-19} -17601 q^{-21} -29735 q^{-23} -16708 q^{-25} +11076 q^{-27} +29878 q^{-29} +23196 q^{-31} -3242 q^{-33} -26528 q^{-35} -26612 q^{-37} -4145 q^{-39} +20728 q^{-41} +26751 q^{-43} +9861 q^{-45} -14068 q^{-47} -24316 q^{-49} -13301 q^{-51} +7817 q^{-53} +20429 q^{-55} +14786 q^{-57} -2721 q^{-59} -16324 q^{-61} -15064 q^{-63} -1184 q^{-65} +12810 q^{-67} +15086 q^{-69} +4250 q^{-71} -10052 q^{-73} -15511 q^{-75} -7310 q^{-77} +7856 q^{-79} +16703 q^{-81} +10795 q^{-83} -5503 q^{-85} -18203 q^{-87} -15247 q^{-89} +2294 q^{-91} +19488 q^{-93} +20227 q^{-95} +2311 q^{-97} -19372 q^{-99} -25126 q^{-101} -8404 q^{-103} +17105 q^{-105} +28708 q^{-107} +15262 q^{-109} -12185 q^{-111} -29724 q^{-113} -21717 q^{-115} +5021 q^{-117} +27387 q^{-119} +26228 q^{-121} +3107 q^{-123} -21689 q^{-125} -27471 q^{-127} -10525 q^{-129} +13702 q^{-131} +25036 q^{-133} +15499 q^{-135} -5220 q^{-137} -19530 q^{-139} -17038 q^{-141} -1869 q^{-143} +12466 q^{-145} +15290 q^{-147} +6291 q^{-149} -5787 q^{-151} -11362 q^{-153} -7627 q^{-155} +794 q^{-157} +6798 q^{-159} +6695 q^{-161} +1905 q^{-163} -3044 q^{-165} -4579 q^{-167} -2577 q^{-169} +609 q^{-171} +2454 q^{-173} +2134 q^{-175} +454 q^{-177} -998 q^{-179} -1275 q^{-181} -623 q^{-183} +198 q^{-185} +588 q^{-187} +465 q^{-189} +54 q^{-191} -220 q^{-193} -215 q^{-195} -82 q^{-197} +45 q^{-199} +86 q^{-201} +55 q^{-203} -12 q^{-205} -33 q^{-207} -12 q^{-209} +2 q^{-211} +5 q^{-213} +6 q^{-215} +2 q^{-217} -7 q^{-219} +3 q^{-223} - q^{-225} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^6+q^4-q^2-1+4 q^{-2} - q^{-4} +4 q^{-6} + q^{-8} - q^{-10} + q^{-12} -4 q^{-14} +2 q^{-16} - q^{-18} - q^{-20} +2 q^{-22} - q^{-24} }[/math] |
| 1,1 | [math]\displaystyle{ q^{20}-4 q^{18}+12 q^{16}-28 q^{14}+56 q^{12}-102 q^{10}+168 q^8-272 q^6+409 q^4-590 q^2+804-1024 q^{-2} +1229 q^{-4} -1340 q^{-6} +1342 q^{-8} -1158 q^{-10} +792 q^{-12} -252 q^{-14} -410 q^{-16} +1118 q^{-18} -1798 q^{-20} +2348 q^{-22} -2706 q^{-24} +2824 q^{-26} -2693 q^{-28} +2326 q^{-30} -1764 q^{-32} +1078 q^{-34} -351 q^{-36} -330 q^{-38} +882 q^{-40} -1262 q^{-42} +1445 q^{-44} -1444 q^{-46} +1300 q^{-48} -1064 q^{-50} +804 q^{-52} -560 q^{-54} +354 q^{-56} -204 q^{-58} +107 q^{-60} -50 q^{-62} +20 q^{-64} -6 q^{-66} + q^{-68} }[/math] |
| 2,0 | [math]\displaystyle{ q^{18}-q^{16}-2 q^{14}+3 q^{12}+2 q^{10}-7 q^8-5 q^6+9 q^4+6 q^2-14-5 q^{-2} +22 q^{-4} +5 q^{-6} -15 q^{-8} +5 q^{-10} +16 q^{-12} -3 q^{-14} -12 q^{-16} +6 q^{-18} +4 q^{-20} -14 q^{-22} +4 q^{-24} +8 q^{-26} -10 q^{-28} -4 q^{-30} +16 q^{-32} -18 q^{-36} + q^{-38} +15 q^{-40} - q^{-42} -16 q^{-44} +6 q^{-46} +11 q^{-48} -4 q^{-50} -6 q^{-52} +5 q^{-56} - q^{-58} -2 q^{-60} + q^{-62} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{14}-2 q^{12}+q^{10}+4 q^8-9 q^6+q^4+12 q^2-20+27 q^{-4} -25 q^{-6} +3 q^{-8} +34 q^{-10} -17 q^{-12} -3 q^{-14} +18 q^{-16} -7 q^{-18} -12 q^{-20} -4 q^{-22} +11 q^{-24} -5 q^{-26} -19 q^{-28} +24 q^{-30} +5 q^{-32} -30 q^{-34} +23 q^{-36} +7 q^{-38} -26 q^{-40} +16 q^{-42} +4 q^{-44} -12 q^{-46} +7 q^{-48} + q^{-50} -3 q^{-52} + q^{-54} }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^7+q^5-2 q^3+q-2 q^{-1} +4 q^{-3} - q^{-5} +5 q^{-7} +2 q^{-9} +2 q^{-11} -2 q^{-15} -4 q^{-19} +2 q^{-21} -2 q^{-23} +2 q^{-25} -2 q^{-27} +2 q^{-29} - q^{-31} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{16}-q^{14}+3 q^{10}-q^8-5 q^6+q^4+4 q^2-8-12 q^{-2} +8 q^{-4} +12 q^{-6} -17 q^{-8} -2 q^{-10} +32 q^{-12} +10 q^{-14} -15 q^{-16} +17 q^{-18} +25 q^{-20} -14 q^{-22} -18 q^{-24} +13 q^{-26} -4 q^{-28} -33 q^{-30} +5 q^{-32} +18 q^{-34} -22 q^{-36} -7 q^{-38} +30 q^{-40} -23 q^{-44} +8 q^{-46} +19 q^{-48} -12 q^{-50} -15 q^{-52} +13 q^{-54} +8 q^{-56} -11 q^{-58} - q^{-60} +7 q^{-62} -2 q^{-64} -2 q^{-66} + q^{-68} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^8+q^6-2 q^4-2 q^{-2} +4 q^{-4} - q^{-6} +5 q^{-8} +3 q^{-10} +3 q^{-12} +2 q^{-14} - q^{-18} -3 q^{-20} -4 q^{-24} +2 q^{-26} -2 q^{-28} + q^{-30} + q^{-32} -2 q^{-34} +2 q^{-36} - q^{-38} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{14}+2 q^{12}-5 q^{10}+8 q^8-13 q^6+19 q^4-26 q^2+32-34 q^{-2} +35 q^{-4} -27 q^{-6} +19 q^{-8} -2 q^{-10} -13 q^{-12} +33 q^{-14} -48 q^{-16} +61 q^{-18} -68 q^{-20} +68 q^{-22} -63 q^{-24} +49 q^{-26} -33 q^{-28} +14 q^{-30} +3 q^{-32} -18 q^{-34} +29 q^{-36} -35 q^{-38} +36 q^{-40} -34 q^{-42} +28 q^{-44} -20 q^{-46} +13 q^{-48} -7 q^{-50} +3 q^{-52} - q^{-54} }[/math] |
| 1,0 | [math]\displaystyle{ q^{24}-2 q^{20}-2 q^{18}+3 q^{16}+6 q^{14}-q^{12}-11 q^{10}-8 q^8+10 q^6+19 q^4-2 q^2-28-15 q^{-2} +24 q^{-4} +33 q^{-6} -9 q^{-8} -37 q^{-10} -7 q^{-12} +37 q^{-14} +24 q^{-16} -20 q^{-18} -26 q^{-20} +13 q^{-22} +28 q^{-24} -3 q^{-26} -27 q^{-28} -4 q^{-30} +22 q^{-32} +6 q^{-34} -23 q^{-36} -15 q^{-38} +19 q^{-40} +19 q^{-42} -17 q^{-44} -27 q^{-46} +11 q^{-48} +35 q^{-50} +4 q^{-52} -36 q^{-54} -21 q^{-56} +28 q^{-58} +34 q^{-60} -11 q^{-62} -35 q^{-64} -8 q^{-66} +25 q^{-68} +17 q^{-70} -11 q^{-72} -16 q^{-74} +10 q^{-78} +4 q^{-80} -3 q^{-82} -3 q^{-84} + q^{-88} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{18}-2 q^{16}+3 q^{14}-4 q^{12}+7 q^{10}-11 q^8+11 q^6-16 q^4+20 q^2-27+23 q^{-2} -26 q^{-4} +30 q^{-6} -23 q^{-8} +20 q^{-10} -7 q^{-12} +13 q^{-14} +13 q^{-16} -15 q^{-18} +26 q^{-20} -33 q^{-22} +45 q^{-24} -53 q^{-26} +45 q^{-28} -57 q^{-30} +51 q^{-32} -46 q^{-34} +37 q^{-36} -34 q^{-38} +22 q^{-40} -6 q^{-42} + q^{-44} +5 q^{-46} -17 q^{-48} +25 q^{-50} -26 q^{-52} +27 q^{-54} -30 q^{-56} +28 q^{-58} -22 q^{-60} +19 q^{-62} -16 q^{-64} +11 q^{-66} -6 q^{-68} +4 q^{-70} -3 q^{-72} + q^{-74} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{32}-2 q^{30}+5 q^{28}-8 q^{26}+8 q^{24}-7 q^{22}-2 q^{20}+15 q^{18}-30 q^{16}+43 q^{14}-49 q^{12}+39 q^{10}-14 q^8-31 q^6+88 q^4-135 q^2+155-130 q^{-2} +45 q^{-4} +73 q^{-6} -192 q^{-8} +270 q^{-10} -257 q^{-12} +158 q^{-14} +9 q^{-16} -171 q^{-18} +266 q^{-20} -245 q^{-22} +128 q^{-24} +45 q^{-26} -178 q^{-28} +213 q^{-30} -130 q^{-32} -29 q^{-34} +208 q^{-36} -308 q^{-38} +285 q^{-40} -137 q^{-42} -84 q^{-44} +291 q^{-46} -414 q^{-48} +398 q^{-50} -255 q^{-52} +33 q^{-54} +188 q^{-56} -340 q^{-58} +366 q^{-60} -262 q^{-62} +73 q^{-64} +112 q^{-66} -230 q^{-68} +224 q^{-70} -106 q^{-72} -61 q^{-74} +203 q^{-76} -245 q^{-78} +172 q^{-80} -12 q^{-82} -172 q^{-84} +292 q^{-86} -302 q^{-88} +206 q^{-90} -47 q^{-92} -113 q^{-94} +215 q^{-96} -231 q^{-98} +180 q^{-100} -86 q^{-102} -8 q^{-104} +69 q^{-106} -96 q^{-108} +82 q^{-110} -51 q^{-112} +23 q^{-114} +2 q^{-116} -13 q^{-118} +15 q^{-120} -13 q^{-122} +7 q^{-124} -3 q^{-126} + q^{-128} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 84"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 2 t^3-9 t^2+20 t-25+20 t^{-1} -9 t^{-2} +2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 2 z^6+3 z^4+2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 87, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^8+4 q^7-8 q^6+11 q^5-14 q^4+15 q^3-13 q^2+11 q-6+3 q^{-1} - q^{-2} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^6 a^{-2} +z^6 a^{-4} +3 z^4 a^{-2} +2 z^4 a^{-4} -z^4 a^{-6} -z^4+5 z^2 a^{-2} -z^2 a^{-6} -2 z^2+4 a^{-2} -2 a^{-4} -1 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^9 a^{-3} +2 z^9 a^{-5} +4 z^8 a^{-2} +10 z^8 a^{-4} +6 z^8 a^{-6} +4 z^7 a^{-1} +5 z^7 a^{-3} +8 z^7 a^{-5} +7 z^7 a^{-7} -2 z^6 a^{-2} -17 z^6 a^{-4} -8 z^6 a^{-6} +4 z^6 a^{-8} +3 z^6+a z^5-4 z^5 a^{-1} -11 z^5 a^{-3} -20 z^5 a^{-5} -13 z^5 a^{-7} +z^5 a^{-9} -5 z^4 a^{-2} +9 z^4 a^{-4} +2 z^4 a^{-6} -6 z^4 a^{-8} -6 z^4-2 a z^3-2 z^3 a^{-1} +4 z^3 a^{-3} +11 z^3 a^{-5} +6 z^3 a^{-7} -z^3 a^{-9} +7 z^2 a^{-2} +z^2 a^{-4} -z^2 a^{-6} +z^2 a^{-8} +4 z^2+a z+2 z a^{-1} +2 z a^{-3} -z a^{-7} -4 a^{-2} -2 a^{-4} -1 }[/math] |
Vassiliev invariants
| V2 and V3: | (2, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of 10 84. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ | |||||||||
| 17 | 1 | -1 | |||||||||||||||||||
| 15 | 3 | 3 | |||||||||||||||||||
| 13 | 5 | 1 | -4 | ||||||||||||||||||
| 11 | 6 | 3 | 3 | ||||||||||||||||||
| 9 | 8 | 5 | -3 | ||||||||||||||||||
| 7 | 7 | 6 | 1 | ||||||||||||||||||
| 5 | 6 | 8 | 2 | ||||||||||||||||||
| 3 | 5 | 7 | -2 | ||||||||||||||||||
| 1 | 2 | 7 | 5 | ||||||||||||||||||
| -1 | 1 | 4 | -3 | ||||||||||||||||||
| -3 | 2 | 2 | |||||||||||||||||||
| -5 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 84]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 84]] |
Out[3]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[8, 12, 9, 11], X[20, 15, 1, 16],X[16, 5, 17, 6], X[12, 18, 13, 17], X[14, 8, 15, 7],X[18, 14, 19, 13], X[6, 19, 7, 20], X[2, 10, 3, 9]] |
In[4]:= | GaussCode[Knot[10, 84]] |
Out[4]= | GaussCode[1, -10, 2, -1, 5, -9, 7, -3, 10, -2, 3, -6, 8, -7, 4, -5, 6, -8, 9, -4] |
In[5]:= | BR[Knot[10, 84]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, -3, 2, 2, -3, 2, -3}] |
In[6]:= | alex = Alexander[Knot[10, 84]][t] |
Out[6]= | 2 9 20 2 3 |
In[7]:= | Conway[Knot[10, 84]][z] |
Out[7]= | 2 4 6 1 + 2 z + 3 z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 84], Knot[11, Alternating, 46], Knot[11, NonAlternating, 184]} |
In[9]:= | {KnotDet[Knot[10, 84]], KnotSignature[Knot[10, 84]]} |
Out[9]= | {87, 2} |
In[10]:= | J=Jones[Knot[10, 84]][q] |
Out[10]= | -2 3 2 3 4 5 6 7 8 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 84]} |
In[12]:= | A2Invariant[Knot[10, 84]][q] |
Out[12]= | -6 -4 -2 2 4 6 8 10 12 14 |
In[13]:= | Kauffman[Knot[10, 84]][a, z] |
Out[13]= | 2 2 2 2 32 4 z 2 z 2 z 2 z z z 7 z z |
In[14]:= | {Vassiliev[2][Knot[10, 84]], Vassiliev[3][Knot[10, 84]]} |
Out[14]= | {0, 2} |
In[15]:= | Kh[Knot[10, 84]][q, t] |
Out[15]= | 3 1 2 1 4 2 q 3 5 |


