L6a1: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 9: Line 9:
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Link Page Header|n=6|t=<math>\textrm{If}[\textrm{AlternatingQ}(\textrm{Link}(6,\textrm{Alternating},1)),a,n]</math>|k=1|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-6:5,-1,3,-4,6,-2,4,-3/goTop.html}}
{{Link Page Header|n=6|t=a|k=1|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-6:5,-1,3,-4,6,-2,4,-3/goTop.html}}


<br style="clear:both" />
<br style="clear:both" />

Revision as of 19:46, 28 August 2005

L5a1.gif

L5a1

L6a2.gif

L6a2

L6a1.gif Visit L6a1's page at Knotilus!

Visit L6a1's page at the original Knot Atlas!

L6a1 is in the Rolfsen table of links.



A kolam with two cycles/components[1]
Depiction with two eights interlaced
Mongolian ornament ; the two eights are horizontal
Another one, sum of two L6a1
Another depiction

Knot presentations

Planar diagram presentation X6172 X10,3,11,4 X12,8,5,7 X8,12,9,11 X2536 X4,9,1,10
Gauss code {1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Vassiliev invariants

V2 and V3: (0, )
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:L6a1/V 2,1 Data:L6a1/V 3,1 Data:L6a1/V 4,1 Data:L6a1/V 4,2 Data:L6a1/V 4,3 Data:L6a1/V 5,1 Data:L6a1/V 5,2 Data:L6a1/V 5,3 Data:L6a1/V 5,4 Data:L6a1/V 6,1 Data:L6a1/V 6,2 Data:L6a1/V 6,3 Data:L6a1/V 6,4 Data:L6a1/V 6,5 Data:L6a1/V 6,6 Data:L6a1/V 6,7 Data:L6a1/V 6,8 Data:L6a1/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -1 is the signature of L6a1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012χ
4      11
2     1 -1
0    11 0
-2   22  0
-4  1    1
-6  2    2
-811     0
-101      1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Link[6, Alternating, 1]]
Out[2]=  
6
In[3]:=
PD[Link[6, Alternating, 1]]
Out[3]=  
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[12, 8, 5, 7], X[8, 12, 9, 11], 
  X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[4]:=
GaussCode[Link[6, Alternating, 1]]
Out[4]=  
GaussCode[{1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}]
In[5]:=
BR[Link[6, Alternating, 1]]
Out[5]=  
BR[Link[6, Alternating, 1]]
In[6]:=
alex = Alexander[Link[6, Alternating, 1]][t]
Out[6]=  
ComplexInfinity
In[7]:=
Conway[Link[6, Alternating, 1]][z]
Out[7]=  
ComplexInfinity
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[Link[6, Alternating, 1]], KnotSignature[Link[6, Alternating, 1]]}
Out[9]=  
{Infinity, -1}
In[10]:=
J=Jones[Link[6, Alternating, 1]][q]
Out[10]=  
  -(9/2)    -(7/2)    3      2        2                   3/2

-q + q - ---- + ---- - ------- + 2 Sqrt[q] - q

                     5/2    3/2   Sqrt[q]
q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[Link[6, Alternating, 1]][q]
Out[12]=  
 -16    2     -12    2    2     -6    -4    -2    2    6

q + --- + q + --- + -- + q + q - q - q + q

       14           10    8
q q q
In[13]:=
Kauffman[Link[6, Alternating, 1]][a, z]
Out[13]=  
      3    5                                         3
4   a    a    z    3        5        2      2  2   z     5  3      4

a - -- - -- + - + a z + 2 a z + 3 z + 3 a z - -- - a z - 2 z -

    z    z    a                                    a

    2  4    4  4      5    3  5
3 a z - a z - a z - a z
In[14]:=
{Vassiliev[2][Link[6, Alternating, 1]], Vassiliev[3][Link[6, Alternating, 1]]}
Out[14]=  
      53

{0, -(--)}

24
In[15]:=
Kh[Link[6, Alternating, 1]][q, t]
Out[15]=  
                         1                  1

1 + Alternating + ---------------- + --------------- +

                            4  10              4  8
                 Alternating  q     Alternating  q

        1                 2                 1          2
 --------------- + --------------- + --------------- + -- + 
            3  8              2  6              2  4    2
 Alternating  q    Alternating  q    Alternating  q    q

       2                       2              2  4
 -------------- + Alternating q  + Alternating  q
              2
Alternating q