9 26: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=26|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,7,-6,9,-8,3,-4,2,-5,6,-9,8,-7,5/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=26|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,7,-6,9,-8,3,-4,2,-5,6,-9,8,-7,5/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 129: Line 121:
2 q t + q t</nowiki></pre></td></tr>
2 q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:06, 28 August 2005

9 25.gif

9_25

9 27.gif

9_27

9 26.gif Visit 9 26's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 26's page at Knotilus!

Visit 9 26's page at the original Knot Atlas!

9 26 Quick Notes


9 26 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X7,15,8,14 X17,7,18,6 X9,17,10,16 X15,9,16,8
Gauss code -1, 4, -3, 1, -2, 7, -6, 9, -8, 3, -4, 2, -5, 6, -9, 8, -7, 5
Dowker-Thistlethwaite code 4 10 12 14 16 2 18 8 6
Conway Notation [311112]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-2][-9]
Hyperbolic Volume 10.5958
A-Polynomial See Data:9 26/A-polynomial

[edit Notes for 9 26's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 9 26's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 47, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (0, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 26. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-10123456χ
15         11
13        2 -2
11       31 2
9      42  -2
7     43   1
5    44    0
3   34     -1
1  25      3
-1 12       -1
-3 2        2
-51         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 26]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 26]]
Out[3]=  
PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], 
 X[13, 18, 14, 1], X[7, 15, 8, 14], X[17, 7, 18, 6], X[9, 17, 10, 16], 

X[15, 9, 16, 8]]
In[4]:=
GaussCode[Knot[9, 26]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -2, 7, -6, 9, -8, 3, -4, 2, -5, 6, -9, 8, -7, 5]
In[5]:=
BR[Knot[9, 26]]
Out[5]=  
BR[4, {1, 1, 1, -2, 1, -2, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[9, 26]][t]
Out[6]=  
       -3   5    11             2    3

-13 + t - -- + -- + 11 t - 5 t + t

            2   t
t
In[7]:=
Conway[Knot[9, 26]][z]
Out[7]=  
     4    6
1 + z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 26], Knot[11, NonAlternating, 25]}
In[9]:=
{KnotDet[Knot[9, 26]], KnotSignature[Knot[9, 26]]}
Out[9]=  
{47, 2}
In[10]:=
J=Jones[Knot[9, 26]][q]
Out[10]=  
      -2   3            2      3      4      5      6    7

-4 - q + - + 7 q - 8 q + 8 q - 7 q + 5 q - 3 q + q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 26]}
In[12]:=
A2Invariant[Knot[9, 26]][q]
Out[12]=  
     -6    -4      2    4      6    8      14    16    18    22
1 - q   + q   + 3 q  - q  + 2 q  - q  - 2 q   + q   - q   + q
In[13]:=
Kauffman[Knot[9, 26]][a, z]
Out[13]=  
                                            2      2       2       2
 -6   3    3    z    z    z    z      2   z    2 z    11 z    13 z

-a - -- - -- + -- + -- - -- - - + 5 z - -- + ---- + ----- + ----- -

       4    2    7    5    3   a           8     6      4       2
      a    a    a    a    a               a     a      a       a

    3      3      3      3                    4      4       4
 4 z    2 z    7 z    3 z         3      4   z    5 z    14 z
 ---- - ---- + ---- + ---- - 2 a z  - 8 z  + -- - ---- - ----- - 
   7      5      3     a                      8     6      4
  a      a      a                            a     a      a

     4      5    5       5      5                    6      6      6
 16 z    3 z    z    11 z    6 z       5      6   4 z    6 z    5 z
 ----- + ---- - -- - ----- - ---- + a z  + 3 z  + ---- + ---- + ---- + 
   2       7     5     3      a                     6      4      2
  a       a     a     a                            a      a      a

    7      7      7    8    8
 3 z    6 z    3 z    z    z
 ---- + ---- + ---- + -- + --
   5      3     a      4    2
a a a a
In[14]:=
{Vassiliev[2][Knot[9, 26]], Vassiliev[3][Knot[9, 26]]}
Out[14]=  
{0, -1}
In[15]:=
Kh[Knot[9, 26]][q, t]
Out[15]=  
         3     1       2      1      2    2 q      3        5

5 q + 3 q + ----- + ----- + ---- + --- + --- + 4 q t + 4 q t +

             5  3    3  2      2   q t    t
            q  t    q  t    q t

    5  2      7  2      7  3      9  3      9  4      11  4    11  5
 4 q  t  + 4 q  t  + 3 q  t  + 4 q  t  + 2 q  t  + 3 q   t  + q   t  + 

    13  5    15  6
2 q t + q t