0 1: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=0|k=1|KnotilusURL=<math>\textrm{KnotilusURL}(\textrm{GaussCode}())</math>}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=0|k=1|KnotilusURL=<math>\textrm{KnotilusURL}(\textrm{GaussCode}())</math>}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=40.%><table cellpadding=0 cellspacing=0>
<td width=40.%><table cellpadding=0 cellspacing=0>
Line 38: Line 31:
<tr align=center><td>1</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>1</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 81: Line 73:
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:12, 28 August 2005

0 1.gif

0_1

3 1.gif

3_1

0 1.gif Visit 0 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit [ 0 1's page] at Knotilus!

Visit 0 1's page at the original Knot Atlas!

Also known as "the Unknot"



A temple symbol MANJI in a Japanese map[1]
A toroidal bubble in glass [2]
Simple closed loop as pseudo-knot
Emblem of Fukuoka prefecture, Japan
Elaborate heraldic depiction
Ornamentation in Palermo, Sicily

Knot presentations

Planar diagram presentation
Gauss code
Dowker-Thistlethwaite code
Conway Notation Data:0 1/Conway Notation

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant Missing

[edit Notes for 0 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial 1
Conway polynomial 1
2nd Alexander ideal (db, data sources)
Determinant and Signature { 1, 0 }
Jones polynomial 1
HOMFLY-PT polynomial (db, data sources) 1
Kauffman polynomial (db, data sources) 1
The A2 invariant Data:0 1/QuantumInvariant/A2/1,0
The G2 invariant

Vassiliev invariants

V2 and V3: (0, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 0 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.    Data:0 1/KhovanovTable
Integral Khovanov Homology

(db, data source)

   Data:0 1/Integral Khovanov Homology

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[0, 1]]
Out[2]=  
0
In[3]:=
PD[Knot[0, 1]]
Out[3]=  
PD[Loop[1]]
In[4]:=
GaussCode[Knot[0, 1]]
Out[4]=  
GaussCode[]
In[5]:=
BR[Knot[0, 1]]
Out[5]=  
BR[1, {}]
In[6]:=
alex = Alexander[Knot[0, 1]][t]
Out[6]=  
1
In[7]:=
Conway[Knot[0, 1]][z]
Out[7]=  
1
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[0, 1], Knot[11, NonAlternating, 34], Knot[11, NonAlternating, 42]}
In[9]:=
{KnotDet[Knot[0, 1]], KnotSignature[Knot[0, 1]]}
Out[9]=  
{1, 0}
In[10]:=
J=Jones[Knot[0, 1]][q]
Out[10]=  
1
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[0, 1]}
In[12]:=
A2Invariant[Knot[0, 1]][q]
Out[12]=  
     -2    2
1 + q   + q
In[13]:=
Kauffman[Knot[0, 1]][a, z]
Out[13]=  
1
In[14]:=
{Vassiliev[2][Knot[0, 1]], Vassiliev[3][Knot[0, 1]]}
Out[14]=  
{0, 0}
In[15]:=
Kh[Knot[0, 1]][q, t]
Out[15]=  
1

- + q

q