6 2: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=6|k=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,6,-5,3,-4,2,-6,5/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=6|k=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,6,-5,3,-4,2,-6,5/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
Line 44: Line 37:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 103: Line 95:
q t</nowiki></pre></td></tr>
q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:09, 28 August 2005

6 1.gif

6_1

6 3.gif

6_3

6 2.gif Visit 6 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 6 2's page at Knotilus!

Visit 6 2's page at the original Knot Atlas!

Dror likes to call 6_2 "The Miller Institute Knot", as it is the logo of the Miller Institute for Basic Research.

The bowline knot of practical knot tying deforms to 6_2.

It looks like the crabber's eye knot of practical knot tying deforms to 6_2 also, although the bowline and crabber's eye knot are considered different knots in practical knot tying, given how they are tied, and insofar as how they carry load differently based upon that.



The Miller Institute Mug [1]
Simple square depiction
3D depiction

Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X7,12,8,1 X11,6,12,7
Gauss code -1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5
Dowker-Thistlethwaite code 4 8 10 12 2 6
Conway Notation [312]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-7][-1]
Hyperbolic Volume 4.40083
A-Polynomial See Data:6 2/A-polynomial

[edit Notes for 6 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 6 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 11, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 6 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012χ
3      11
1       0
-1    21 1
-3   11  0
-5  11   0
-7 11    0
-9 1     -1
-111      1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[6, 2]]
Out[2]=  
6
In[3]:=
PD[Knot[6, 2]]
Out[3]=  
PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], 
  X[7, 12, 8, 1], X[11, 6, 12, 7]]
In[4]:=
GaussCode[Knot[6, 2]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5]
In[5]:=
BR[Knot[6, 2]]
Out[5]=  
BR[3, {-1, -1, -1, 2, -1, 2}]
In[6]:=
alex = Alexander[Knot[6, 2]][t]
Out[6]=  
      -2   3          2

-3 - t + - + 3 t - t

t
In[7]:=
Conway[Knot[6, 2]][z]
Out[7]=  
     2    4
1 - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[6, 2]}
In[9]:=
{KnotDet[Knot[6, 2]], KnotSignature[Knot[6, 2]]}
Out[9]=  
{11, -2}
In[10]:=
J=Jones[Knot[6, 2]][q]
Out[10]=  
      -5   2    2    2    2

-1 + q - -- + -- - -- + - + q

           4    3    2   q
q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[6, 2]}
In[12]:=
A2Invariant[Knot[6, 2]][q]
Out[12]=  
     -16    -8    -4    -2    2    4
1 + q    - q   - q   + q   + q  + q
In[13]:=
Kauffman[Knot[6, 2]][a, z]
Out[13]=  
       2    4    3      5        2      2  2      4  2    6  2

2 + 2 a + a - a z - a z - 3 z - 6 a z - 2 a z + a z -

      3      5  3    4      2  4      4  4      5    3  5
2 a z + 2 a z + z + 3 a z + 2 a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[6, 2]], Vassiliev[3][Knot[6, 2]]}
Out[14]=  
{0, 1}
In[15]:=
Kh[Knot[6, 2]][q, t]
Out[15]=  
 -3   2     1        1       1       1       1      1      1     t

q + - + ------ + ----- + ----- + ----- + ----- + ---- + ---- + - +

     q    11  4    9  3    7  3    7  2    5  2    5      3     q
         q   t    q  t    q  t    q  t    q  t    q  t   q  t

  3  2
q t