10 153: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
| ⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
| ⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
| Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
| Line 47: | Line 40: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 127: | Line 119: | ||
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
|||
Revision as of 19:14, 28 August 2005
|
|
|
|
Visit 10 153's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 153's page at Knotilus! Visit 10 153's page at the original Knot Atlas! |
10_153 is not [math]\displaystyle{ k }[/math]-colourable for any [math]\displaystyle{ k }[/math]. See The Determinant and the Signature.
Knot presentations
| Planar diagram presentation | X4251 X8493 X12,6,13,5 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X6,12,7,11 X2837 |
| Gauss code | 1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7 |
| Dowker-Thistlethwaite code | 4 8 12 2 -16 6 -18 -20 -10 -14 |
| Conway Notation | [(3,2)-(21,2)] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^3-t^2-t+3- t^{-1} - t^{-2} + t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^6+5 z^4+4 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 1, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^4+q^3-q^2+q+1+ q^{-2} - q^{-3} + q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^6-z^4 a^{-2} +6 z^4-a^4 z^2-a^2 z^2-4 z^2 a^{-2} +10 z^2-a^4-a^2-3 a^{-2} +6 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^8 a^{-2} +z^8+a z^7+2 z^7 a^{-1} +z^7 a^{-3} +a^4 z^6-6 z^6 a^{-2} -7 z^6+a^5 z^5+a^3 z^5-7 a z^5-13 z^5 a^{-1} -6 z^5 a^{-3} -4 a^4 z^4+10 z^4 a^{-2} +14 z^4-4 a^5 z^3-4 a^3 z^3+12 a z^3+22 z^3 a^{-1} +10 z^3 a^{-3} +3 a^4 z^2-2 a^2 z^2-7 z^2 a^{-2} -12 z^2+3 a^5 z+2 a^3 z-6 a z-10 z a^{-1} -5 z a^{-3} -a^4+a^2+3 a^{-2} +6 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{16}-q^{12}-q^{10}+2 q^4+2 q^2+3+2 q^{-2} - q^{-8} - q^{-10} - q^{-12} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{80}+q^{76}-q^{74}+q^{70}-2 q^{68}+q^{64}-3 q^{62}+q^{60}-q^{58}-4 q^{56}+5 q^{54}-5 q^{52}+q^{50}+q^{48}-5 q^{46}+5 q^{44}-3 q^{42}-2 q^{40}+2 q^{38}-4 q^{36}+q^{34}+3 q^{32}-5 q^{30}+3 q^{28}-q^{24}+2 q^{22}-2 q^{20}+2 q^{18}+4 q^{14}-2 q^{12}+3 q^{10}+4 q^8-q^6+5 q^4-q^2+2+6 q^{-2} - q^{-4} +2 q^{-6} +4 q^{-8} -2 q^{-10} +6 q^{-12} - q^{-14} -3 q^{-16} +4 q^{-18} -4 q^{-20} +2 q^{-22} -3 q^{-26} + q^{-28} - q^{-30} -3 q^{-32} -2 q^{-36} - q^{-38} -3 q^{-42} - q^{-48} - q^{-52} + q^{-56} + q^{-60} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^{11}+q^3+q+2 q^{-1} - q^{-9} }[/math] |
| 2 | [math]\displaystyle{ q^{32}-q^{28}+q^{24}-3 q^{20}-q^{18}+2 q^{16}-2 q^{14}-q^{12}+2 q^{10}+q^6+q^4+2 q^2+1+ q^{-2} +2 q^{-4} -2 q^{-8} + q^{-10} + q^{-12} -2 q^{-14} - q^{-16} - q^{-24} + q^{-28} }[/math] |
| 3 | [math]\displaystyle{ -q^{63}+q^{59}+q^{57}-2 q^{53}-q^{51}+q^{49}+4 q^{47}+3 q^{45}-2 q^{43}-5 q^{41}-2 q^{39}+5 q^{37}+4 q^{35}-4 q^{33}-7 q^{31}-q^{29}+5 q^{27}+q^{25}-4 q^{23}-2 q^{21}+q^{19}+q^{17}+q^{15}+q^9+q^7-q^5+q^3+5 q+4 q^{-1} -2 q^{-3} -3 q^{-5} +6 q^{-7} +5 q^{-9} -3 q^{-11} -7 q^{-13} - q^{-15} +5 q^{-17} +2 q^{-19} -3 q^{-21} -5 q^{-23} -2 q^{-25} +3 q^{-27} +3 q^{-29} -3 q^{-33} -2 q^{-35} + q^{-37} + q^{-39} + q^{-41} - q^{-47} + q^{-51} + q^{-53} - q^{-57} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^{16}-q^{12}-q^{10}+2 q^4+2 q^2+3+2 q^{-2} - q^{-8} - q^{-10} - q^{-12} }[/math] |
| 1,1 | [math]\displaystyle{ q^{44}+2 q^{40}-2 q^{38}+2 q^{34}-4 q^{32}+6 q^{30}-8 q^{28}+4 q^{26}-2 q^{24}-4 q^{22}+2 q^{20}-12 q^{18}+4 q^{16}-6 q^{14}+3 q^{12}+6 q^8+4 q^6+5 q^4+8 q^2+10 q^{-2} -2 q^{-4} +4 q^{-6} -4 q^{-10} +4 q^{-12} -6 q^{-14} -2 q^{-16} -2 q^{-18} -4 q^{-20} +2 q^{-22} -4 q^{-24} +2 q^{-32} + q^{-36} }[/math] |
| 2,0 | [math]\displaystyle{ q^{42}+q^{36}+q^{34}+q^{32}-q^{28}-2 q^{26}-5 q^{24}-2 q^{22}-3 q^{20}-3 q^{18}-q^{16}+q^{12}+3 q^8+3 q^6+6 q^4+5 q^2+8+4 q^{-2} +2 q^{-4} + q^{-6} -2 q^{-8} -2 q^{-10} -2 q^{-12} -2 q^{-14} -2 q^{-16} -3 q^{-18} -2 q^{-20} - q^{-22} - q^{-24} + q^{-30} + q^{-32} + q^{-34} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{34}+q^{30}-q^{24}-3 q^{22}-q^{20}-3 q^{18}-3 q^{16}-q^{14}-2 q^{12}-2 q^{10}+q^8+3 q^6+5 q^4+8 q^2+10+7 q^{-2} +4 q^{-4} - q^{-6} -2 q^{-8} -7 q^{-10} -5 q^{-12} -3 q^{-14} -3 q^{-16} + q^{-20} + q^{-22} + q^{-26} }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{21}-q^{17}-q^{15}-q^{13}-q^{11}+2 q^5+3 q^3+4 q+3 q^{-1} +3 q^{-3} - q^{-7} - q^{-9} -2 q^{-11} - q^{-13} - q^{-15} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{44}+q^{40}+2 q^{38}+q^{36}+q^{34}+q^{32}-q^{30}-3 q^{28}-3 q^{26}-5 q^{24}-6 q^{22}-7 q^{20}-6 q^{18}-7 q^{16}-8 q^{14}-2 q^{12}+q^{10}+4 q^8+13 q^6+19 q^4+20 q^2+20+17 q^{-2} +8 q^{-4} -8 q^{-8} -11 q^{-10} -15 q^{-12} -13 q^{-14} -8 q^{-16} -5 q^{-18} -2 q^{-20} +2 q^{-22} +3 q^{-24} +2 q^{-26} +2 q^{-28} + q^{-30} + q^{-32} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{26}-q^{22}-q^{20}-q^{18}-q^{16}-q^{14}-q^{12}+2 q^6+3 q^4+5 q^2+4+4 q^{-2} +3 q^{-4} - q^{-8} -2 q^{-10} -2 q^{-12} -2 q^{-14} - q^{-16} - q^{-18} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{34}-q^{30}-q^{24}+q^{22}-q^{20}+q^{18}-q^{16}+q^{14}+q^8-q^6+3 q^4+2+ q^{-2} +2 q^{-4} + q^{-6} + q^{-10} - q^{-12} + q^{-14} - q^{-16} - q^{-20} - q^{-22} - q^{-26} }[/math] |
| 1,0 | [math]\displaystyle{ q^{56}+q^{48}-q^{44}+q^{40}-q^{38}-2 q^{36}-q^{34}-q^{30}-3 q^{28}-2 q^{26}-2 q^{20}-q^{18}+q^{14}+q^{12}+q^{10}+2 q^8+4 q^6+3 q^4+4 q^2+3+4 q^{-2} +3 q^{-4} +3 q^{-6} - q^{-8} - q^{-14} -3 q^{-16} -3 q^{-18} - q^{-20} - q^{-22} -3 q^{-24} -2 q^{-26} + q^{-36} + q^{-44} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{46}+q^{42}+q^{38}-2 q^{34}-q^{32}-3 q^{30}-q^{28}-3 q^{26}-q^{24}-3 q^{22}-q^{20}-q^{18}-2 q^{16}-2 q^{14}-2 q^{12}+q^{10}+q^8+6 q^6+6 q^4+10 q^2+10+10 q^{-2} +6 q^{-4} +4 q^{-6} -4 q^{-10} -5 q^{-12} -7 q^{-14} -5 q^{-16} -6 q^{-18} -2 q^{-20} -2 q^{-22} + q^{-26} + q^{-28} + q^{-30} + q^{-34} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{80}+q^{76}-q^{74}+q^{70}-2 q^{68}+q^{64}-3 q^{62}+q^{60}-q^{58}-4 q^{56}+5 q^{54}-5 q^{52}+q^{50}+q^{48}-5 q^{46}+5 q^{44}-3 q^{42}-2 q^{40}+2 q^{38}-4 q^{36}+q^{34}+3 q^{32}-5 q^{30}+3 q^{28}-q^{24}+2 q^{22}-2 q^{20}+2 q^{18}+4 q^{14}-2 q^{12}+3 q^{10}+4 q^8-q^6+5 q^4-q^2+2+6 q^{-2} - q^{-4} +2 q^{-6} +4 q^{-8} -2 q^{-10} +6 q^{-12} - q^{-14} -3 q^{-16} +4 q^{-18} -4 q^{-20} +2 q^{-22} -3 q^{-26} + q^{-28} - q^{-30} -3 q^{-32} -2 q^{-36} - q^{-38} -3 q^{-42} - q^{-48} - q^{-52} + q^{-56} + q^{-60} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 153"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^3-t^2-t+3- t^{-1} - t^{-2} + t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^6+5 z^4+4 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^4+q^3-q^2+q+1+ q^{-2} - q^{-3} + q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^6-z^4 a^{-2} +6 z^4-a^4 z^2-a^2 z^2-4 z^2 a^{-2} +10 z^2-a^4-a^2-3 a^{-2} +6 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^8 a^{-2} +z^8+a z^7+2 z^7 a^{-1} +z^7 a^{-3} +a^4 z^6-6 z^6 a^{-2} -7 z^6+a^5 z^5+a^3 z^5-7 a z^5-13 z^5 a^{-1} -6 z^5 a^{-3} -4 a^4 z^4+10 z^4 a^{-2} +14 z^4-4 a^5 z^3-4 a^3 z^3+12 a z^3+22 z^3 a^{-1} +10 z^3 a^{-3} +3 a^4 z^2-2 a^2 z^2-7 z^2 a^{-2} -12 z^2+3 a^5 z+2 a^3 z-6 a z-10 z a^{-1} -5 z a^{-3} -a^4+a^2+3 a^{-2} +6 }[/math] |
Vassiliev invariants
| V2 and V3: | (4, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 10 153. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 153]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 153]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[13, 18, 14, 19],X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1],X[19, 14, 20, 15], X[6, 12, 7, 11], X[2, 8, 3, 7]] |
In[4]:= | GaussCode[Knot[10, 153]] |
Out[4]= | GaussCode[1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7] |
In[5]:= | BR[Knot[10, 153]] |
Out[5]= | BR[4, {-1, -1, -1, -2, -1, -1, 3, 2, 2, 2, 3}] |
In[6]:= | alex = Alexander[Knot[10, 153]][t] |
Out[6]= | -3 -2 1 2 3 |
In[7]:= | Conway[Knot[10, 153]][z] |
Out[7]= | 2 4 6 1 + 4 z + 5 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 153]} |
In[9]:= | {KnotDet[Knot[10, 153]], KnotSignature[Knot[10, 153]]} |
Out[9]= | {1, 0} |
In[10]:= | J=Jones[Knot[10, 153]][q] |
Out[10]= | -5 -4 -3 -2 2 3 4 1 - q + q - q + q + q - q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 153]} |
In[12]:= | A2Invariant[Knot[10, 153]][q] |
Out[12]= | -16 -12 -10 2 2 2 8 10 12 |
In[13]:= | Kauffman[Knot[10, 153]][a, z] |
Out[13]= | 3 2 4 5 z 10 z 3 5 2 |
In[14]:= | {Vassiliev[2][Knot[10, 153]], Vassiliev[3][Knot[10, 153]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[10, 153]][q, t] |
Out[15]= | 3 1 1 1 1 1 1 1 t |


