10 163: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=10|k=163|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-7,8,-1,9,-2,10,-8,-4,5,-3,-9,6,-10,7,3,-5,4/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=10|k=163|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-7,8,-1,9,-2,10,-8,-4,5,-3,-9,6,-10,7,3,-5,4/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
Line 46: Line 39:
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 132: Line 124:
4 q t + 5 q t + 3 q t + 4 q t + 2 q t + 3 q t + 2 q t</nowiki></pre></td></tr>
4 q t + 5 q t + 3 q t + 4 q t + 2 q t + 3 q t + 2 q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:11, 28 August 2005

10 162.gif

10_162

10 164.gif

10_164

10 163.gif Visit 10 163's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 163's page at Knotilus!

Visit 10 163's page at the original Knot Atlas!

10 163 Quick Notes



Warning. In 1973 K. Perko noticed that the knots that were later labeled 10161 and 10162 in Rolfsen's tables (which were published in 1976 and were based on earlier tables by Little (1900) and Conway (1970)) are in fact the same. In our table we removed Rolfsen's 10162 and renumbered the subsequent knots, so that our 10 crossings total is 165, one less than Rolfsen's 166. Read more: [1] [2] [3] [4] [5].

Knot presentations

Planar diagram presentation X6271 X8394 X13,19,14,18 X11,1,12,20 X19,13,20,12 X2,16,3,15 X4,17,5,18 X10,6,11,5 X14,7,15,8 X16,10,17,9
Gauss code 1, -6, 2, -7, 8, -1, 9, -2, 10, -8, -4, 5, -3, -9, 6, -10, 7, 3, -5, 4
Dowker-Thistlethwaite code 6 8 10 14 16 -20 -18 2 4 -12
Conway Notation [8*-30]

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-2][-8]
Hyperbolic Volume 13.29
A-Polynomial See Data:10 163/A-polynomial

[edit Notes for 10 163's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 10 163's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 51, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 163. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
13        2-2
11       3 3
9      42 -2
7     53  2
5    44   0
3   45    -1
1  35     2
-1 13      -2
-3 3       3
-51        -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[10, 163]]
Out[2]=  
10
In[3]:=
PD[Knot[10, 163]]
Out[3]=  
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[13, 19, 14, 18], X[11, 1, 12, 20], 
 X[19, 13, 20, 12], X[2, 16, 3, 15], X[4, 17, 5, 18], X[10, 6, 11, 5], 

X[14, 7, 15, 8], X[16, 10, 17, 9]]
In[4]:=
GaussCode[Knot[10, 163]]
Out[4]=  
GaussCode[1, -6, 2, -7, 8, -1, 9, -2, 10, -8, -4, 5, -3, -9, 6, -10, 7, 
  3, -5, 4]
In[5]:=
BR[Knot[10, 163]]
Out[5]=  
BR[4, {1, 1, -2, -1, -1, 3, 2, -1, 2, 2, 3}]
In[6]:=
alex = Alexander[Knot[10, 163]][t]
Out[6]=  
       -3   5    12             2    3

-15 + t - -- + -- + 12 t - 5 t + t

            2   t
t
In[7]:=
Conway[Knot[10, 163]][z]
Out[7]=  
     2    4    6
1 + z  + z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 28], Knot[9, 29], Knot[10, 163], Knot[11, NonAlternating, 87]}
In[9]:=
{KnotDet[Knot[10, 163]], KnotSignature[Knot[10, 163]]}
Out[9]=  
{51, 2}
In[10]:=
J=Jones[Knot[10, 163]][q]
Out[10]=  
      -2   4            2      3      4      5      6

-6 - q + - + 8 q - 9 q + 9 q - 7 q + 5 q - 2 q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[10, 163]}
In[12]:=
A2Invariant[Knot[10, 163]][q]
Out[12]=  
     -6   2       2      4    6      8      10      12      16

1 - q + -- + 2 q - 3 q + q - 2 q + 2 q + 2 q + 2 q -

          4
         q

    18    20
2 q - q
In[13]:=
Kauffman[Knot[10, 163]][a, z]
Out[13]=  
                                                2      2      2
    -6   2     -2   2 z   3 z   z       2   4 z    4 z    2 z

1 + a + -- + a - --- - --- - -- + 2 z - ---- - ---- + ---- +

          4          7     5     3            6      4      2
         a          a     a     a            a      a      a

    3      3      3      3                    4    4       4      5
 3 z    7 z    8 z    3 z       3      4   4 z    z    11 z    4 z
 ---- + ---- + ---- + ---- - a z  - 8 z  + ---- + -- - ----- - ---- - 
   7      5      3     a                     6     4     2       5
  a      a      a                           a     a     a       a

     5       5                  6      6      7      7      7      8
 15 z    10 z       5      6   z    3 z    3 z    8 z    5 z    2 z
 ----- - ----- + a z  + 4 z  + -- + ---- + ---- + ---- + ---- + ---- + 
   3       a                    6     2      5      3     a       4
  a                            a     a      a      a             a

    8
 2 z
 ----
   2
a
In[14]:=
{Vassiliev[2][Knot[10, 163]], Vassiliev[3][Knot[10, 163]]}
Out[14]=  
{0, 2}
In[15]:=
Kh[Knot[10, 163]][q, t]
Out[15]=  
         3     1       3      1      3    3 q      3        5

5 q + 4 q + ----- + ----- + ---- + --- + --- + 5 q t + 4 q t +

             5  3    3  2      2   q t    t
            q  t    q  t    q t

    5  2      7  2      7  3      9  3      9  4      11  4      13  5
4 q t + 5 q t + 3 q t + 4 q t + 2 q t + 3 q t + 2 q t