10 126: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 40: | Line 70: | ||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>-1+ q^{-1} +2 q^{-2} -4 q^{-3} + q^{-4} +6 q^{-5} -7 q^{-6} +10 q^{-8} -9 q^{-9} - q^{-10} +10 q^{-11} -7 q^{-12} -3 q^{-13} +8 q^{-14} -4 q^{-15} -4 q^{-16} +5 q^{-17} - q^{-18} -3 q^{-19} +2 q^{-20} - q^{-22} + q^{-23} </math>|J3=<math>q^4-q^3-q^2-q+2+2 q^{-1} - q^{-2} -3 q^{-3} - q^{-4} +4 q^{-5} +4 q^{-6} -2 q^{-7} -9 q^{-8} +3 q^{-9} +10 q^{-10} +3 q^{-11} -16 q^{-12} - q^{-13} +13 q^{-14} +8 q^{-15} -19 q^{-16} -3 q^{-17} +14 q^{-18} +8 q^{-19} -16 q^{-20} -6 q^{-21} +11 q^{-22} +9 q^{-23} -10 q^{-24} -9 q^{-25} +5 q^{-26} +10 q^{-27} -2 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +4 q^{-32} -6 q^{-33} -3 q^{-34} +2 q^{-35} +4 q^{-36} -2 q^{-37} - q^{-38} +2 q^{-40} - q^{-41} + q^{-44} - q^{-45} </math>|J4=<math>-q^8+q^7+2 q^6-q^4-5 q^3-q^2+5 q+4+4 q^{-1} -8 q^{-2} -10 q^{-3} +3 q^{-4} +4 q^{-5} +15 q^{-6} + q^{-7} -15 q^{-8} -7 q^{-9} -10 q^{-10} +22 q^{-11} +19 q^{-12} -7 q^{-13} -13 q^{-14} -33 q^{-15} +18 q^{-16} +34 q^{-17} +6 q^{-18} -10 q^{-19} -51 q^{-20} +11 q^{-21} +39 q^{-22} +13 q^{-23} -3 q^{-24} -60 q^{-25} +8 q^{-26} +40 q^{-27} +14 q^{-28} - q^{-29} -59 q^{-30} +6 q^{-31} +36 q^{-32} +14 q^{-33} +5 q^{-34} -54 q^{-35} +26 q^{-37} +14 q^{-38} +16 q^{-39} -41 q^{-40} -8 q^{-41} +8 q^{-42} +9 q^{-43} +27 q^{-44} -21 q^{-45} -9 q^{-46} -7 q^{-47} -3 q^{-48} +26 q^{-49} -4 q^{-50} -10 q^{-52} -11 q^{-53} +14 q^{-54} +7 q^{-56} -3 q^{-57} -9 q^{-58} +5 q^{-59} -3 q^{-60} +5 q^{-61} + q^{-62} -4 q^{-63} +3 q^{-64} -3 q^{-65} + q^{-66} + q^{-67} -2 q^{-68} +2 q^{-69} - q^{-70} - q^{-73} + q^{-74} </math>|J5=<math>-q^{11}+2 q^9+2 q^8-q^6-6 q^5-5 q^4+3 q^3+8 q^2+8 q+4-7 q^{-1} -17 q^{-2} -11 q^{-3} +3 q^{-4} +16 q^{-5} +22 q^{-6} +11 q^{-7} -12 q^{-8} -29 q^{-9} -27 q^{-10} - q^{-11} +27 q^{-12} +44 q^{-13} +26 q^{-14} -20 q^{-15} -56 q^{-16} -47 q^{-17} -2 q^{-18} +60 q^{-19} +77 q^{-20} +20 q^{-21} -59 q^{-22} -89 q^{-23} -50 q^{-24} +53 q^{-25} +111 q^{-26} +60 q^{-27} -45 q^{-28} -107 q^{-29} -84 q^{-30} +37 q^{-31} +123 q^{-32} +79 q^{-33} -34 q^{-34} -107 q^{-35} -97 q^{-36} +28 q^{-37} +123 q^{-38} +84 q^{-39} -30 q^{-40} -108 q^{-41} -94 q^{-42} +24 q^{-43} +118 q^{-44} +86 q^{-45} -25 q^{-46} -103 q^{-47} -92 q^{-48} +14 q^{-49} +104 q^{-50} +86 q^{-51} -5 q^{-52} -85 q^{-53} -88 q^{-54} -10 q^{-55} +71 q^{-56} +79 q^{-57} +25 q^{-58} -45 q^{-59} -71 q^{-60} -37 q^{-61} +22 q^{-62} +53 q^{-63} +43 q^{-64} + q^{-65} -32 q^{-66} -42 q^{-67} -17 q^{-68} +13 q^{-69} +30 q^{-70} +23 q^{-71} +8 q^{-72} -17 q^{-73} -24 q^{-74} -13 q^{-75} +2 q^{-76} +12 q^{-77} +20 q^{-78} +6 q^{-79} -7 q^{-80} -10 q^{-81} -9 q^{-82} -4 q^{-83} +8 q^{-84} +7 q^{-85} +3 q^{-86} + q^{-87} -4 q^{-88} -6 q^{-89} + q^{-91} +4 q^{-93} + q^{-94} -3 q^{-95} -3 q^{-98} +2 q^{-99} +2 q^{-100} - q^{-101} + q^{-103} -2 q^{-104} + q^{-106} + q^{-109} - q^{-110} </math>|J6=<math>q^{20}-q^{19}-q^{18}-q^{14}+5 q^{13}+q^{12}-2 q^9-6 q^8-10 q^7+4 q^6+4 q^5+9 q^4+12 q^3+10 q^2-5 q-25-14 q^{-1} -14 q^{-2} -3 q^{-3} +18 q^{-4} +40 q^{-5} +33 q^{-6} -5 q^{-7} -15 q^{-8} -41 q^{-9} -57 q^{-10} -32 q^{-11} +30 q^{-12} +73 q^{-13} +60 q^{-14} +55 q^{-15} -6 q^{-16} -97 q^{-17} -125 q^{-18} -65 q^{-19} +35 q^{-20} +95 q^{-21} +165 q^{-22} +117 q^{-23} -51 q^{-24} -179 q^{-25} -194 q^{-26} -84 q^{-27} +47 q^{-28} +234 q^{-29} +259 q^{-30} +59 q^{-31} -160 q^{-32} -278 q^{-33} -203 q^{-34} -46 q^{-35} +241 q^{-36} +349 q^{-37} +154 q^{-38} -113 q^{-39} -303 q^{-40} -263 q^{-41} -117 q^{-42} +223 q^{-43} +380 q^{-44} +195 q^{-45} -84 q^{-46} -300 q^{-47} -273 q^{-48} -148 q^{-49} +210 q^{-50} +384 q^{-51} +202 q^{-52} -76 q^{-53} -295 q^{-54} -270 q^{-55} -152 q^{-56} +205 q^{-57} +380 q^{-58} +203 q^{-59} -72 q^{-60} -289 q^{-61} -267 q^{-62} -157 q^{-63} +191 q^{-64} +366 q^{-65} +213 q^{-66} -49 q^{-67} -263 q^{-68} -258 q^{-69} -180 q^{-70} +142 q^{-71} +322 q^{-72} +226 q^{-73} +11 q^{-74} -191 q^{-75} -225 q^{-76} -216 q^{-77} +47 q^{-78} +228 q^{-79} +216 q^{-80} +88 q^{-81} -73 q^{-82} -142 q^{-83} -222 q^{-84} -56 q^{-85} +91 q^{-86} +149 q^{-87} +120 q^{-88} +39 q^{-89} -21 q^{-90} -156 q^{-91} -95 q^{-92} -25 q^{-93} +42 q^{-94} +70 q^{-95} +72 q^{-96} +67 q^{-97} -52 q^{-98} -47 q^{-99} -52 q^{-100} -28 q^{-101} -9 q^{-102} +28 q^{-103} +67 q^{-104} +5 q^{-105} +14 q^{-106} -13 q^{-107} -22 q^{-108} -36 q^{-109} -14 q^{-110} +24 q^{-111} - q^{-112} +23 q^{-113} +12 q^{-114} +7 q^{-115} -17 q^{-116} -14 q^{-117} +4 q^{-118} -15 q^{-119} +5 q^{-120} +6 q^{-121} +13 q^{-122} -3 q^{-123} -3 q^{-124} +7 q^{-125} -11 q^{-126} -3 q^{-127} -2 q^{-128} +7 q^{-129} - q^{-130} - q^{-131} +8 q^{-132} -4 q^{-133} -2 q^{-134} -3 q^{-135} +3 q^{-136} - q^{-137} -2 q^{-138} +6 q^{-139} - q^{-140} - q^{-141} -2 q^{-142} + q^{-143} -2 q^{-145} +3 q^{-146} - q^{-149} - q^{-152} + q^{-153} </math>|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 47: | Line 80: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 126]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[15, 20, 16, 1], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[15, 20, 16, 1], |
|||
X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11], |
X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11], |
||
X[19, 12, 20, 13], X[13, 6, 14, 7], X[2, 8, 3, 7]]</nowiki></pre></td></tr> |
X[19, 12, 20, 13], X[13, 6, 14, 7], X[2, 8, 3, 7]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 126]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, -3, 9, 10, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, |
|||
6, -8, 4]</nowiki></pre></td></tr> |
6, -8, 4]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, -14, 2, -16, -18, -6, -20, -10, -12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, 1, 1, -2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, 1, 1, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 126]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 126]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_126_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 126]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 126]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 4 2 3 |
|||
-5 + t - -- + - + 4 t - 2 t + t |
-5 + t - -- + - + 4 t - 2 t + t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 126]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 126]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 5 z + 4 z + z</nowiki></pre></td></tr> |
1 + 5 z + 4 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 126]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{19, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 126]], KnotSignature[Knot[10, 126]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{19, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 126]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 -7 2 3 3 4 2 2 |
|||
-1 - q + q - -- + -- - -- + -- - -- + - |
-1 - q + q - -- + -- - -- + -- - -- + - |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
q q q q q</nowiki></pre></td></tr> |
q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 126]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 126]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 126]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -24 -22 2 -18 -16 -14 3 2 2 -6 -4 |
|||
-1 - q - q - --- - q + q + q + --- + --- + -- + q - q |
-1 - q - q - --- - q + q + q + --- + --- + -- + q - q |
||
20 12 10 8 |
20 12 10 8 |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 126]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 126]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 4 2 6 2 2 4 4 4 |
|||
-2 a + 7 a - 4 a - 3 a z + 12 a z - 4 a z - a z + 6 a z - |
|||
6 4 4 6 |
|||
a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 126]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 9 |
|||
2 a + 7 a + 4 a - 2 a z - 6 a z - 8 a z - a z + 3 a z - |
2 a + 7 a + 4 a - 2 a z - 6 a z - 8 a z - a z + 3 a z - |
||
Line 102: | Line 164: | ||
3 7 5 7 7 7 4 8 6 8 |
3 7 5 7 7 7 4 8 6 8 |
||
a z + 2 a z + a z + a z + a z</nowiki></pre></td></tr> |
a z + 2 a z + a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 126]], Vassiliev[3][Knot[10, 126]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 126]], Vassiliev[3][Knot[10, 126]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, -9}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 1 1 1 2 1 2 2 1 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 126]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 1 1 1 2 1 2 2 1 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
3 q 17 7 13 6 13 5 11 4 9 4 9 3 7 3 |
3 q 17 7 13 6 13 5 11 4 9 4 9 3 7 3 |
||
Line 114: | Line 178: | ||
7 2 5 2 3 |
7 2 5 2 3 |
||
q t q t q t</nowiki></pre></td></tr> |
q t q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 126], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -23 -22 2 3 -18 5 4 4 8 3 |
|||
-1 + q - q + --- - --- - q + --- - --- - --- + --- - --- - |
|||
20 19 17 16 15 14 13 |
|||
q q q q q q q |
|||
7 10 -10 9 10 7 6 -4 4 2 1 |
|||
--- + --- - q - -- + -- - -- + -- + q - -- + -- + - |
|||
12 11 9 8 6 5 3 2 q |
|||
q q q q q q q q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:24, 29 August 2005
|
|
Visit 10 126's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 126's page at Knotilus! Visit 10 126's page at the original Knot Atlas! 10_126 is also known as the pretzel knot P(-5,3,2). |
10 126 Further Notes and Views
Knot presentations
Planar diagram presentation | X4251 X8493 X5,14,6,15 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X13,6,14,7 X2837 |
Gauss code | 1, -10, 2, -1, -3, 9, 10, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, 4 |
Dowker-Thistlethwaite code | 4 8 -14 2 -16 -18 -6 -20 -10 -12 |
Conway Notation | [41,3,2-] |
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 126"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 19, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (5, -9) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 126. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.