10 159: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
| Line 40: | Line 70: | ||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>-3+5 q^{-1} +6 q^{-2} -19 q^{-3} +11 q^{-4} +22 q^{-5} -39 q^{-6} +10 q^{-7} +39 q^{-8} -49 q^{-9} +3 q^{-10} +46 q^{-11} -43 q^{-12} -6 q^{-13} +42 q^{-14} -27 q^{-15} -13 q^{-16} +28 q^{-17} -9 q^{-18} -11 q^{-19} +10 q^{-20} -3 q^{-22} + q^{-23} </math>|J3=<math>q^4-q^3-q^2-5 q+3+16 q^{-1} + q^{-2} -27 q^{-3} -25 q^{-4} +53 q^{-5} +48 q^{-6} -58 q^{-7} -95 q^{-8} +68 q^{-9} +133 q^{-10} -54 q^{-11} -180 q^{-12} +46 q^{-13} +202 q^{-14} -20 q^{-15} -224 q^{-16} +2 q^{-17} +225 q^{-18} +21 q^{-19} -220 q^{-20} -42 q^{-21} +205 q^{-22} +62 q^{-23} -178 q^{-24} -84 q^{-25} +148 q^{-26} +98 q^{-27} -109 q^{-28} -105 q^{-29} +68 q^{-30} +99 q^{-31} -29 q^{-32} -84 q^{-33} +3 q^{-34} +58 q^{-35} +13 q^{-36} -33 q^{-37} -17 q^{-38} +16 q^{-39} +11 q^{-40} -5 q^{-41} -5 q^{-42} +3 q^{-44} - q^{-45} </math>|J4=<math>-q^8+q^7+4 q^6-3 q^4-13 q^3-13 q^2+23 q+33+31 q^{-1} -43 q^{-2} -119 q^{-3} -11 q^{-4} +94 q^{-5} +209 q^{-6} +36 q^{-7} -311 q^{-8} -232 q^{-9} +26 q^{-10} +499 q^{-11} +356 q^{-12} -396 q^{-13} -575 q^{-14} -288 q^{-15} +688 q^{-16} +801 q^{-17} -263 q^{-18} -814 q^{-19} -700 q^{-20} +668 q^{-21} +1123 q^{-22} -27 q^{-23} -844 q^{-24} -1002 q^{-25} +526 q^{-26} +1234 q^{-27} +171 q^{-28} -734 q^{-29} -1133 q^{-30} +347 q^{-31} +1177 q^{-32} +322 q^{-33} -539 q^{-34} -1145 q^{-35} +121 q^{-36} +996 q^{-37} +463 q^{-38} -255 q^{-39} -1046 q^{-40} -150 q^{-41} +675 q^{-42} +541 q^{-43} +92 q^{-44} -783 q^{-45} -355 q^{-46} +259 q^{-47} +441 q^{-48} +345 q^{-49} -387 q^{-50} -344 q^{-51} -68 q^{-52} +186 q^{-53} +347 q^{-54} -65 q^{-55} -156 q^{-56} -144 q^{-57} -17 q^{-58} +173 q^{-59} +38 q^{-60} -7 q^{-61} -66 q^{-62} -51 q^{-63} +42 q^{-64} +15 q^{-65} +17 q^{-66} -9 q^{-67} -18 q^{-68} +5 q^{-69} +5 q^{-71} -3 q^{-73} + q^{-74} </math>|J5=<math>-3 q^{11}+8 q^9+9 q^8+q^7-8 q^6-41 q^5-38 q^4+16 q^3+86 q^2+120 q+52-124 q^{-1} -295 q^{-2} -238 q^{-3} +95 q^{-4} +512 q^{-5} +581 q^{-6} +138 q^{-7} -657 q^{-8} -1148 q^{-9} -624 q^{-10} +681 q^{-11} +1694 q^{-12} +1430 q^{-13} -313 q^{-14} -2264 q^{-15} -2453 q^{-16} -304 q^{-17} +2500 q^{-18} +3528 q^{-19} +1345 q^{-20} -2518 q^{-21} -4499 q^{-22} -2455 q^{-23} +2129 q^{-24} +5219 q^{-25} +3640 q^{-26} -1581 q^{-27} -5639 q^{-28} -4590 q^{-29} +837 q^{-30} +5778 q^{-31} +5383 q^{-32} -197 q^{-33} -5683 q^{-34} -5842 q^{-35} -445 q^{-36} +5457 q^{-37} +6153 q^{-38} +908 q^{-39} -5161 q^{-40} -6232 q^{-41} -1325 q^{-42} +4800 q^{-43} +6246 q^{-44} +1674 q^{-45} -4403 q^{-46} -6154 q^{-47} -2023 q^{-48} +3900 q^{-49} +5990 q^{-50} +2420 q^{-51} -3288 q^{-52} -5736 q^{-53} -2818 q^{-54} +2517 q^{-55} +5318 q^{-56} +3223 q^{-57} -1607 q^{-58} -4729 q^{-59} -3509 q^{-60} +619 q^{-61} +3895 q^{-62} +3622 q^{-63} +343 q^{-64} -2885 q^{-65} -3436 q^{-66} -1159 q^{-67} +1779 q^{-68} +2958 q^{-69} +1675 q^{-70} -730 q^{-71} -2221 q^{-72} -1830 q^{-73} -128 q^{-74} +1400 q^{-75} +1642 q^{-76} +638 q^{-77} -632 q^{-78} -1201 q^{-79} -829 q^{-80} +67 q^{-81} +722 q^{-82} +726 q^{-83} +227 q^{-84} -300 q^{-85} -488 q^{-86} -311 q^{-87} +38 q^{-88} +264 q^{-89} +244 q^{-90} +62 q^{-91} -92 q^{-92} -137 q^{-93} -87 q^{-94} +16 q^{-95} +68 q^{-96} +50 q^{-97} +5 q^{-98} -15 q^{-99} -24 q^{-100} -17 q^{-101} +9 q^{-102} +11 q^{-103} +2 q^{-104} -5 q^{-107} +3 q^{-109} - q^{-110} </math>|J6=<math>q^{20}-q^{19}-q^{18}-4 q^{15}-6 q^{14}+12 q^{13}+18 q^{12}+17 q^{11}+12 q^{10}-15 q^9-73 q^8-119 q^7-58 q^6+82 q^5+209 q^4+324 q^3+253 q^2-134 q-630-856 q^{-1} -523 q^{-2} +198 q^{-3} +1300 q^{-4} +1951 q^{-5} +1294 q^{-6} -609 q^{-7} -2681 q^{-8} -3456 q^{-9} -2456 q^{-10} +1087 q^{-11} +4970 q^{-12} +6313 q^{-13} +3413 q^{-14} -2521 q^{-15} -7902 q^{-16} -9913 q^{-17} -4600 q^{-18} +5066 q^{-19} +13055 q^{-20} +13151 q^{-21} +4322 q^{-22} -8584 q^{-23} -18998 q^{-24} -16515 q^{-25} -2300 q^{-26} +15477 q^{-27} +24091 q^{-28} +17301 q^{-29} -1647 q^{-30} -23264 q^{-31} -28939 q^{-32} -15195 q^{-33} +10547 q^{-34} +29799 q^{-35} +29961 q^{-36} +9877 q^{-37} -20547 q^{-38} -35841 q^{-39} -26993 q^{-40} +1815 q^{-41} +28935 q^{-42} +37062 q^{-43} +19851 q^{-44} -14457 q^{-45} -36622 q^{-46} -33554 q^{-47} -5576 q^{-48} +24928 q^{-49} +38699 q^{-50} +25382 q^{-51} -9057 q^{-52} -34412 q^{-53} -35586 q^{-54} -9898 q^{-55} +20901 q^{-56} +37694 q^{-57} +27646 q^{-58} -5207 q^{-59} -31543 q^{-60} -35634 q^{-61} -12640 q^{-62} +17120 q^{-63} +35796 q^{-64} +28945 q^{-65} -1280 q^{-66} -27854 q^{-67} -35025 q^{-68} -15869 q^{-69} +11907 q^{-70} +32552 q^{-71} +30215 q^{-72} +4490 q^{-73} -21635 q^{-74} -32940 q^{-75} -20007 q^{-76} +3792 q^{-77} +26096 q^{-78} +30067 q^{-79} +11841 q^{-80} -11680 q^{-81} -27089 q^{-82} -22755 q^{-83} -6197 q^{-84} +15291 q^{-85} +25517 q^{-86} +17400 q^{-87} +248 q^{-88} -16295 q^{-89} -20316 q^{-90} -13648 q^{-91} +2574 q^{-92} +15408 q^{-93} +16740 q^{-94} +8868 q^{-95} -3732 q^{-96} -11789 q^{-97} -13892 q^{-98} -6123 q^{-99} +3758 q^{-100} +9611 q^{-101} +9724 q^{-102} +4246 q^{-103} -2066 q^{-104} -7726 q^{-105} -6979 q^{-106} -2972 q^{-107} +1709 q^{-108} +4799 q^{-109} +4796 q^{-110} +2753 q^{-111} -1394 q^{-112} -3073 q^{-113} -3146 q^{-114} -1634 q^{-115} +344 q^{-116} +1802 q^{-117} +2310 q^{-118} +876 q^{-119} -93 q^{-120} -990 q^{-121} -1126 q^{-122} -794 q^{-123} -39 q^{-124} +677 q^{-125} +499 q^{-126} +424 q^{-127} +43 q^{-128} -185 q^{-129} -363 q^{-130} -227 q^{-131} +50 q^{-132} +44 q^{-133} +140 q^{-134} +88 q^{-135} +46 q^{-136} -66 q^{-137} -63 q^{-138} -4 q^{-139} -23 q^{-140} +15 q^{-141} +15 q^{-142} +26 q^{-143} -9 q^{-144} -11 q^{-145} +5 q^{-146} -7 q^{-147} +5 q^{-150} -3 q^{-152} + q^{-153} </math>|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 47: | Line 80: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 159]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 9, 4, 8], X[18, 11, 19, 12], X[20, 13, 1, 14], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 9, 4, 8], X[18, 11, 19, 12], X[20, 13, 1, 14], |
|||
X[15, 2, 16, 3], X[17, 5, 18, 4], X[12, 19, 13, 20], X[5, 10, 6, 11], |
X[15, 2, 16, 3], X[17, 5, 18, 4], X[12, 19, 13, 20], X[5, 10, 6, 11], |
||
X[7, 15, 8, 14], X[9, 16, 10, 17]]</nowiki></pre></td></tr> |
X[7, 15, 8, 14], X[9, 16, 10, 17]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 159]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, |
|||
-3, 7, -4]</nowiki></pre></td></tr> |
-3, 7, -4]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 10, 14, 16, -18, -20, 2, 4, -12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -2, 1, -2, 1, 1, -2, -2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -2, 1, -2, 1, 1, -2, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 159]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 159]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_159_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 159]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 159]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 9 2 3 |
|||
-11 + t - -- + - + 9 t - 4 t + t |
-11 + t - -- + - + 9 t - 4 t + t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 159]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 159]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 2 z + 2 z + z</nowiki></pre></td></tr> |
1 + 2 z + 2 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 159]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 159]], KnotSignature[Knot[10, 159]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 159]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 3 5 6 7 7 5 4 |
|||
-1 - q + -- - -- + -- - -- + -- - -- + - |
-1 - q + -- - -- + -- - -- + -- - -- + - |
||
7 6 5 4 3 2 q |
7 6 5 4 3 2 q |
||
q q q q q q</nowiki></pre></td></tr> |
q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 159]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 159]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 159]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -24 -22 -20 -16 2 -12 -10 2 2 2 |
|||
-1 - q + q - q + q - --- + q - q + -- + -- + -- |
-1 - q + q - q + q - --- + q - q + -- + -- + -- |
||
14 8 6 2 |
14 8 6 2 |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 159]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 159]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 4 2 6 2 2 4 4 4 6 4 |
|||
a + a - a - a z + 5 a z - 2 a z - a z + 4 a z - a z + |
|||
4 6 |
|||
a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 159]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 9 2 2 4 2 6 2 |
|||
-a + a + a + a z + a z + a z + a z - 2 a z - 4 a z + a z + |
-a + a + a + a z + a z + a z + a z - 2 a z - 4 a z + a z + |
||
| Line 99: | Line 161: | ||
3 7 5 7 7 7 4 8 6 8 |
3 7 5 7 7 7 4 8 6 8 |
||
a z + 4 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
a z + 4 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 159]], Vassiliev[3][Knot[10, 159]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 159]], Vassiliev[3][Knot[10, 159]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, -3}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 2 1 3 2 3 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 159]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 2 1 3 2 3 3 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
||
| Line 111: | Line 175: | ||
9 3 7 3 7 2 5 2 5 3 |
9 3 7 3 7 2 5 2 5 3 |
||
q t q t q t q t q t q t</nowiki></pre></td></tr> |
q t q t q t q t q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 159], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -23 3 10 11 9 28 13 27 42 6 43 |
|||
-3 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + |
|||
22 20 19 18 17 16 15 14 13 12 |
|||
q q q q q q q q q q |
|||
46 3 49 39 10 39 22 11 19 6 5 |
|||
--- + --- - -- + -- + -- - -- + -- + -- - -- + -- + - |
|||
11 10 9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q q q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
||
Revision as of 18:27, 29 August 2005
|
|
|
|
Visit 10 159's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 159's page at Knotilus! Visit 10 159's page at the original Knot Atlas! |
10 159 Further Notes and Views
Knot presentations
| Planar diagram presentation | X1627 X3948 X18,11,19,12 X20,13,1,14 X15,2,16,3 X17,5,18,4 X12,19,13,20 X5,10,6,11 X7,15,8,14 X9,16,10,17 |
| Gauss code | -1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, -3, 7, -4 |
| Dowker-Thistlethwaite code | 6 8 10 14 16 -18 -20 2 4 -12 |
| Conway Notation | [-30:2:20] |
|
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-4 t^2+9 t-11+9 t^{-1} -4 t^{-2} + t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+2 z^4+2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 39, -2 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^6-2 z^2 a^6-a^6+z^6 a^4+4 z^4 a^4+5 z^2 a^4+a^4-z^4 a^2-z^2 a^2+a^2} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-2 z^3 a^9+z a^9+3 z^6 a^8-7 z^4 a^8+3 z^2 a^8+3 z^7 a^7-5 z^5 a^7-z^3 a^7+z a^7+z^8 a^6+3 z^6 a^6-8 z^4 a^6+z^2 a^6+a^6+4 z^7 a^5-5 z^5 a^5+z a^5+z^8 a^4+3 z^4 a^4-4 z^2 a^4+a^4+z^7 a^3+z^5 a^3+z a^3+4 z^4 a^2-2 z^2 a^2-a^2+z^3 a} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{24}+q^{22}-q^{20}+q^{16}-2 q^{14}+q^{12}-q^{10}+2 q^8+2 q^6+2 q^2-1} |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}-2 q^{126}+5 q^{124}-8 q^{122}+7 q^{120}-3 q^{118}-6 q^{116}+20 q^{114}-28 q^{112}+31 q^{110}-22 q^{108}-4 q^{106}+28 q^{104}-49 q^{102}+51 q^{100}-33 q^{98}+2 q^{96}+30 q^{94}-46 q^{92}+39 q^{90}-14 q^{88}-16 q^{86}+37 q^{84}-41 q^{82}+19 q^{80}+16 q^{78}-43 q^{76}+58 q^{74}-48 q^{72}+22 q^{70}+12 q^{68}-44 q^{66}+59 q^{64}-62 q^{62}+43 q^{60}-10 q^{58}-25 q^{56}+47 q^{54}-51 q^{52}+35 q^{50}-6 q^{48}-24 q^{46}+37 q^{44}-31 q^{42}+8 q^{40}+26 q^{38}-46 q^{36}+50 q^{34}-24 q^{32}-8 q^{30}+37 q^{28}-49 q^{26}+44 q^{24}-22 q^{22}+2 q^{20}+16 q^{18}-24 q^{16}+22 q^{14}-12 q^{12}+6 q^{10}+2 q^8-4 q^6+q^4-2 q^2+2-2 q^{-2} + q^{-4} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{17}+2 q^{15}-2 q^{13}+q^{11}-q^9+2 q^5-q^3+3 q- q^{-1} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-2 q^{46}-2 q^{44}+7 q^{42}-q^{40}-10 q^{38}+8 q^{36}+6 q^{34}-12 q^{32}+2 q^{30}+9 q^{28}-7 q^{26}-3 q^{24}+6 q^{22}-7 q^{18}+10 q^{14}-7 q^{12}-6 q^{10}+14 q^8-2 q^6-8 q^4+8 q^2+2-3 q^{-2} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{93}+2 q^{91}+2 q^{89}-3 q^{87}-7 q^{85}+q^{83}+17 q^{81}+5 q^{79}-23 q^{77}-21 q^{75}+21 q^{73}+41 q^{71}-10 q^{69}-52 q^{67}-11 q^{65}+54 q^{63}+33 q^{61}-47 q^{59}-48 q^{57}+32 q^{55}+53 q^{53}-16 q^{51}-52 q^{49}+5 q^{47}+47 q^{45}+5 q^{43}-36 q^{41}-16 q^{39}+28 q^{37}+24 q^{35}-17 q^{33}-40 q^{31}+4 q^{29}+48 q^{27}+14 q^{25}-55 q^{23}-33 q^{21}+52 q^{19}+48 q^{17}-37 q^{15}-52 q^{13}+18 q^{11}+49 q^9+2 q^7-35 q^5-7 q^3+15 q+13 q^{-1} -4 q^{-3} -6 q^{-5} - q^{-7} + q^{-11} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{225}+2 q^{223}+2 q^{221}-3 q^{219}-3 q^{217}-3 q^{215}+8 q^{211}+17 q^{209}+5 q^{207}-19 q^{205}-34 q^{203}-31 q^{201}+8 q^{199}+67 q^{197}+100 q^{195}+37 q^{193}-85 q^{191}-182 q^{189}-170 q^{187}+6 q^{185}+254 q^{183}+379 q^{181}+205 q^{179}-191 q^{177}-553 q^{175}-570 q^{173}-108 q^{171}+576 q^{169}+954 q^{167}+613 q^{165}-288 q^{163}-1147 q^{161}-1235 q^{159}-315 q^{157}+1018 q^{155}+1719 q^{153}+1090 q^{151}-499 q^{149}-1867 q^{147}-1834 q^{145}-276 q^{143}+1631 q^{141}+2302 q^{139}+1087 q^{137}-1068 q^{135}-2400 q^{133}-1736 q^{131}+380 q^{129}+2158 q^{127}+2085 q^{125}+241 q^{123}-1709 q^{121}-2108 q^{119}-685 q^{117}+1213 q^{115}+1904 q^{113}+897 q^{111}-784 q^{109}-1587 q^{107}-915 q^{105}+468 q^{103}+1263 q^{101}+845 q^{99}-270 q^{97}-1016 q^{95}-760 q^{93}+140 q^{91}+838 q^{89}+760 q^{87}+2 q^{85}-764 q^{83}-857 q^{81}-200 q^{79}+680 q^{77}+1070 q^{75}+548 q^{73}-557 q^{71}-1327 q^{69}-1006 q^{67}+276 q^{65}+1528 q^{63}+1572 q^{61}+188 q^{59}-1555 q^{57}-2114 q^{55}-822 q^{53}+1313 q^{51}+2453 q^{49}+1516 q^{47}-779 q^{45}-2470 q^{43}-2099 q^{41}+52 q^{39}+2098 q^{37}+2352 q^{35}+694 q^{33}-1404 q^{31}-2210 q^{29}-1225 q^{27}+604 q^{25}+1720 q^{23}+1376 q^{21}+84 q^{19}-1029 q^{17}-1198 q^{15}-479 q^{13}+431 q^{11}+793 q^9+531 q^7+2 q^5-390 q^3-399 q-145 q^{-1} +112 q^{-3} +195 q^{-5} +135 q^{-7} +16 q^{-9} -61 q^{-11} -69 q^{-13} -31 q^{-15} +7 q^{-17} +15 q^{-19} +14 q^{-21} +5 q^{-23} -3 q^{-25} -3 q^{-27} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{312}-2 q^{310}-2 q^{308}+3 q^{306}+3 q^{304}+3 q^{302}-4 q^{300}-8 q^{296}-17 q^{294}+4 q^{292}+19 q^{290}+34 q^{288}+18 q^{286}+9 q^{284}-43 q^{282}-100 q^{280}-80 q^{278}-7 q^{276}+118 q^{274}+185 q^{272}+239 q^{270}+75 q^{268}-222 q^{266}-453 q^{264}-498 q^{262}-214 q^{260}+241 q^{258}+868 q^{256}+1056 q^{254}+625 q^{252}-316 q^{250}-1349 q^{248}-1866 q^{246}-1489 q^{244}+144 q^{242}+1985 q^{240}+3123 q^{238}+2615 q^{236}+459 q^{234}-2521 q^{232}-4791 q^{230}-4348 q^{228}-1354 q^{226}+3101 q^{224}+6444 q^{222}+6618 q^{220}+2712 q^{218}-3620 q^{216}-8439 q^{214}-8989 q^{212}-4064 q^{210}+3838 q^{208}+10568 q^{206}+11424 q^{204}+5258 q^{202}-4465 q^{200}-12443 q^{198}-13299 q^{196}-6170 q^{194}+5480 q^{192}+14177 q^{190}+14421 q^{188}+5894 q^{186}-6669 q^{184}-15289 q^{182}-14629 q^{180}-4520 q^{178}+8197 q^{176}+15648 q^{174}+13209 q^{172}+2415 q^{170}-9513 q^{168}-15072 q^{166}-10522 q^{164}+283 q^{162}+10272 q^{160}+13020 q^{158}+7169 q^{156}-2786 q^{154}-10137 q^{152}-9989 q^{150}-3533 q^{148}+4582 q^{146}+8720 q^{144}+6635 q^{142}+416 q^{140}-5354 q^{138}-6624 q^{136}-3380 q^{134}+1833 q^{132}+5062 q^{130}+4453 q^{128}+764 q^{126}-3163 q^{124}-4462 q^{122}-2564 q^{120}+1217 q^{118}+3959 q^{116}+4007 q^{114}+1138 q^{112}-2712 q^{110}-4976 q^{108}-3971 q^{106}+56 q^{104}+4378 q^{102}+6410 q^{100}+4200 q^{98}-1200 q^{96}-6731 q^{94}-8368 q^{92}-4361 q^{90}+3030 q^{88}+9591 q^{86}+10372 q^{84}+4282 q^{82}-5692 q^{80}-12793 q^{78}-11929 q^{76}-3197 q^{74}+8601 q^{72}+15503 q^{70}+12786 q^{68}+1262 q^{66}-11398 q^{64}-17106 q^{62}-12176 q^{60}+719 q^{58}+13143 q^{56}+17409 q^{54}+10472 q^{52}-2507 q^{50}-13447 q^{48}-15869 q^{46}-8503 q^{44}+3412 q^{42}+12497 q^{40}+13179 q^{38}+6336 q^{36}-3402 q^{34}-10144 q^{32}-10240 q^{30}-4553 q^{28}+2904 q^{26}+7350 q^{24}+7190 q^{22}+3168 q^{20}-1851 q^{18}-4870 q^{16}-4657 q^{14}-2003 q^{12}+930 q^{10}+2755 q^8+2734 q^6+1306 q^4-392 q^2-1368-1357 q^{-2} -752 q^{-4} +46 q^{-6} +557 q^{-8} +618 q^{-10} +350 q^{-12} +38 q^{-14} -154 q^{-16} -218 q^{-18} -148 q^{-20} -35 q^{-22} +34 q^{-24} +49 q^{-26} +37 q^{-28} +19 q^{-30} -11 q^{-34} -5 q^{-36} - q^{-38} - q^{-40} - q^{-42} + q^{-46} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{24}+q^{22}-q^{20}+q^{16}-2 q^{14}+q^{12}-q^{10}+2 q^8+2 q^6+2 q^2-1} |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-4 q^{66}+12 q^{64}-28 q^{62}+50 q^{60}-80 q^{58}+116 q^{56}-144 q^{54}+158 q^{52}-154 q^{50}+122 q^{48}-62 q^{46}-11 q^{44}+92 q^{42}-172 q^{40}+234 q^{38}-273 q^{36}+284 q^{34}-272 q^{32}+234 q^{30}-172 q^{28}+94 q^{26}-18 q^{24}-60 q^{22}+114 q^{20}-150 q^{18}+160 q^{16}-140 q^{14}+119 q^{12}-76 q^{10}+52 q^8-28 q^6+15 q^4-4 q^2+2-4 q^{-2} + q^{-4} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{62}-q^{60}-2 q^{58}+2 q^{56}+2 q^{54}-2 q^{52}-2 q^{50}+2 q^{48}+5 q^{46}-4 q^{44}-3 q^{42}+4 q^{40}-q^{38}-3 q^{36}-q^{34}+3 q^{32}-q^{30}-2 q^{28}+q^{26}-2 q^{24}-5 q^{22}+2 q^{20}+5 q^{18}-3 q^{16}+q^{14}+7 q^{12}+3 q^{10}-q^8-q^6+5 q^4-3} |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-2 q^{52}+q^{50}+3 q^{48}-6 q^{46}+4 q^{44}+3 q^{42}-9 q^{40}+6 q^{38}+2 q^{36}-8 q^{34}+2 q^{32}+3 q^{30}-3 q^{28}-q^{26}+q^{24}+2 q^{22}-3 q^{20}-4 q^{18}+9 q^{16}-3 q^{14}-2 q^{12}+12 q^{10}-2 q^8-3 q^6+6 q^4-2 q^2-2+ q^{-2} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{31}+q^{29}-2 q^{27}+q^{25}-q^{23}+q^{21}-q^{19}+2 q^{11}+q^9+3 q^7-q^5+2 q^3-q} |
| 1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{88}-4 q^{86}+10 q^{84}-14 q^{82}+7 q^{80}+15 q^{78}-48 q^{76}+71 q^{74}-64 q^{72}+19 q^{70}+54 q^{68}-120 q^{66}+153 q^{64}-133 q^{62}+60 q^{60}+37 q^{58}-117 q^{56}+150 q^{54}-124 q^{52}+68 q^{50}-22 q^{48}+9 q^{46}-27 q^{44}+36 q^{42}-15 q^{40}-50 q^{38}+121 q^{36}-173 q^{34}+156 q^{32}-91 q^{30}-14 q^{28}+99 q^{26}-138 q^{24}+123 q^{22}-57 q^{20}+q^{18}+51 q^{16}-41 q^{14}+30 q^{12}+6 q^{10}-15 q^8+11 q^6-2 q^4-7 q^2+6-4 q^{-2} + q^{-4} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-q^{66}+3 q^{62}-3 q^{60}-2 q^{58}+6 q^{56}+q^{54}-7 q^{52}+q^{50}+5 q^{48}-5 q^{46}-8 q^{44}+4 q^{42}+4 q^{40}-9 q^{38}+q^{36}+9 q^{34}-6 q^{32}-5 q^{30}+8 q^{28}-2 q^{26}-7 q^{24}+4 q^{22}+8 q^{20}-q^{18}-q^{16}+10 q^{14}+5 q^{12}-4 q^{10}+4 q^6-3 q^4-q^2+1} |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{38}+q^{36}-2 q^{34}-q^{28}+q^{26}-q^{24}+q^{22}-q^{20}+q^{18}+2 q^{14}+q^{12}+2 q^{10}+2 q^8-q^6+2 q^4-q^2} |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{54}+2 q^{52}-5 q^{50}+7 q^{48}-8 q^{46}+10 q^{44}-9 q^{42}+7 q^{40}-4 q^{38}+4 q^{34}-10 q^{32}+13 q^{30}-17 q^{28}+17 q^{26}-17 q^{24}+14 q^{22}-9 q^{20}+6 q^{18}+q^{16}-3 q^{14}+8 q^{12}-8 q^{10}+10 q^8-9 q^6+8 q^4-4 q^2+2- q^{-2} } |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{74}-2 q^{72}+3 q^{70}-4 q^{68}+6 q^{66}-7 q^{64}+7 q^{62}-8 q^{60}+8 q^{58}-6 q^{56}+3 q^{54}-2 q^{52}+2 q^{48}-8 q^{46}+8 q^{44}-10 q^{42}+11 q^{40}-14 q^{38}+13 q^{36}-12 q^{34}+13 q^{32}-10 q^{30}+6 q^{28}-5 q^{26}+4 q^{24}+2 q^{22}-3 q^{20}+6 q^{18}-4 q^{16}+11 q^{14}-5 q^{12}+7 q^{10}-7 q^8+7 q^6-3 q^4+q^2-2+ q^{-2} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}-2 q^{126}+5 q^{124}-8 q^{122}+7 q^{120}-3 q^{118}-6 q^{116}+20 q^{114}-28 q^{112}+31 q^{110}-22 q^{108}-4 q^{106}+28 q^{104}-49 q^{102}+51 q^{100}-33 q^{98}+2 q^{96}+30 q^{94}-46 q^{92}+39 q^{90}-14 q^{88}-16 q^{86}+37 q^{84}-41 q^{82}+19 q^{80}+16 q^{78}-43 q^{76}+58 q^{74}-48 q^{72}+22 q^{70}+12 q^{68}-44 q^{66}+59 q^{64}-62 q^{62}+43 q^{60}-10 q^{58}-25 q^{56}+47 q^{54}-51 q^{52}+35 q^{50}-6 q^{48}-24 q^{46}+37 q^{44}-31 q^{42}+8 q^{40}+26 q^{38}-46 q^{36}+50 q^{34}-24 q^{32}-8 q^{30}+37 q^{28}-49 q^{26}+44 q^{24}-22 q^{22}+2 q^{20}+16 q^{18}-24 q^{16}+22 q^{14}-12 q^{12}+6 q^{10}+2 q^8-4 q^6+q^4-2 q^2+2-2 q^{-2} + q^{-4} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 159"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-4 t^2+9 t-11+9 t^{-1} -4 t^{-2} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+2 z^4+2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 39, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^6-2 z^2 a^6-a^6+z^6 a^4+4 z^4 a^4+5 z^2 a^4+a^4-z^4 a^2-z^2 a^2+a^2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-2 z^3 a^9+z a^9+3 z^6 a^8-7 z^4 a^8+3 z^2 a^8+3 z^7 a^7-5 z^5 a^7-z^3 a^7+z a^7+z^8 a^6+3 z^6 a^6-8 z^4 a^6+z^2 a^6+a^6+4 z^7 a^5-5 z^5 a^5+z a^5+z^8 a^4+3 z^4 a^4-4 z^2 a^4+a^4+z^7 a^3+z^5 a^3+z a^3+4 z^4 a^2-2 z^2 a^2-a^2+z^3 a} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {...}
Vassiliev invariants
| V2 and V3: | (2, -3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 159. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3+5 q^{-1} +6 q^{-2} -19 q^{-3} +11 q^{-4} +22 q^{-5} -39 q^{-6} +10 q^{-7} +39 q^{-8} -49 q^{-9} +3 q^{-10} +46 q^{-11} -43 q^{-12} -6 q^{-13} +42 q^{-14} -27 q^{-15} -13 q^{-16} +28 q^{-17} -9 q^{-18} -11 q^{-19} +10 q^{-20} -3 q^{-22} + q^{-23} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-q^3-q^2-5 q+3+16 q^{-1} + q^{-2} -27 q^{-3} -25 q^{-4} +53 q^{-5} +48 q^{-6} -58 q^{-7} -95 q^{-8} +68 q^{-9} +133 q^{-10} -54 q^{-11} -180 q^{-12} +46 q^{-13} +202 q^{-14} -20 q^{-15} -224 q^{-16} +2 q^{-17} +225 q^{-18} +21 q^{-19} -220 q^{-20} -42 q^{-21} +205 q^{-22} +62 q^{-23} -178 q^{-24} -84 q^{-25} +148 q^{-26} +98 q^{-27} -109 q^{-28} -105 q^{-29} +68 q^{-30} +99 q^{-31} -29 q^{-32} -84 q^{-33} +3 q^{-34} +58 q^{-35} +13 q^{-36} -33 q^{-37} -17 q^{-38} +16 q^{-39} +11 q^{-40} -5 q^{-41} -5 q^{-42} +3 q^{-44} - q^{-45} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+q^7+4 q^6-3 q^4-13 q^3-13 q^2+23 q+33+31 q^{-1} -43 q^{-2} -119 q^{-3} -11 q^{-4} +94 q^{-5} +209 q^{-6} +36 q^{-7} -311 q^{-8} -232 q^{-9} +26 q^{-10} +499 q^{-11} +356 q^{-12} -396 q^{-13} -575 q^{-14} -288 q^{-15} +688 q^{-16} +801 q^{-17} -263 q^{-18} -814 q^{-19} -700 q^{-20} +668 q^{-21} +1123 q^{-22} -27 q^{-23} -844 q^{-24} -1002 q^{-25} +526 q^{-26} +1234 q^{-27} +171 q^{-28} -734 q^{-29} -1133 q^{-30} +347 q^{-31} +1177 q^{-32} +322 q^{-33} -539 q^{-34} -1145 q^{-35} +121 q^{-36} +996 q^{-37} +463 q^{-38} -255 q^{-39} -1046 q^{-40} -150 q^{-41} +675 q^{-42} +541 q^{-43} +92 q^{-44} -783 q^{-45} -355 q^{-46} +259 q^{-47} +441 q^{-48} +345 q^{-49} -387 q^{-50} -344 q^{-51} -68 q^{-52} +186 q^{-53} +347 q^{-54} -65 q^{-55} -156 q^{-56} -144 q^{-57} -17 q^{-58} +173 q^{-59} +38 q^{-60} -7 q^{-61} -66 q^{-62} -51 q^{-63} +42 q^{-64} +15 q^{-65} +17 q^{-66} -9 q^{-67} -18 q^{-68} +5 q^{-69} +5 q^{-71} -3 q^{-73} + q^{-74} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 q^{11}+8 q^9+9 q^8+q^7-8 q^6-41 q^5-38 q^4+16 q^3+86 q^2+120 q+52-124 q^{-1} -295 q^{-2} -238 q^{-3} +95 q^{-4} +512 q^{-5} +581 q^{-6} +138 q^{-7} -657 q^{-8} -1148 q^{-9} -624 q^{-10} +681 q^{-11} +1694 q^{-12} +1430 q^{-13} -313 q^{-14} -2264 q^{-15} -2453 q^{-16} -304 q^{-17} +2500 q^{-18} +3528 q^{-19} +1345 q^{-20} -2518 q^{-21} -4499 q^{-22} -2455 q^{-23} +2129 q^{-24} +5219 q^{-25} +3640 q^{-26} -1581 q^{-27} -5639 q^{-28} -4590 q^{-29} +837 q^{-30} +5778 q^{-31} +5383 q^{-32} -197 q^{-33} -5683 q^{-34} -5842 q^{-35} -445 q^{-36} +5457 q^{-37} +6153 q^{-38} +908 q^{-39} -5161 q^{-40} -6232 q^{-41} -1325 q^{-42} +4800 q^{-43} +6246 q^{-44} +1674 q^{-45} -4403 q^{-46} -6154 q^{-47} -2023 q^{-48} +3900 q^{-49} +5990 q^{-50} +2420 q^{-51} -3288 q^{-52} -5736 q^{-53} -2818 q^{-54} +2517 q^{-55} +5318 q^{-56} +3223 q^{-57} -1607 q^{-58} -4729 q^{-59} -3509 q^{-60} +619 q^{-61} +3895 q^{-62} +3622 q^{-63} +343 q^{-64} -2885 q^{-65} -3436 q^{-66} -1159 q^{-67} +1779 q^{-68} +2958 q^{-69} +1675 q^{-70} -730 q^{-71} -2221 q^{-72} -1830 q^{-73} -128 q^{-74} +1400 q^{-75} +1642 q^{-76} +638 q^{-77} -632 q^{-78} -1201 q^{-79} -829 q^{-80} +67 q^{-81} +722 q^{-82} +726 q^{-83} +227 q^{-84} -300 q^{-85} -488 q^{-86} -311 q^{-87} +38 q^{-88} +264 q^{-89} +244 q^{-90} +62 q^{-91} -92 q^{-92} -137 q^{-93} -87 q^{-94} +16 q^{-95} +68 q^{-96} +50 q^{-97} +5 q^{-98} -15 q^{-99} -24 q^{-100} -17 q^{-101} +9 q^{-102} +11 q^{-103} +2 q^{-104} -5 q^{-107} +3 q^{-109} - q^{-110} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-q^{19}-q^{18}-4 q^{15}-6 q^{14}+12 q^{13}+18 q^{12}+17 q^{11}+12 q^{10}-15 q^9-73 q^8-119 q^7-58 q^6+82 q^5+209 q^4+324 q^3+253 q^2-134 q-630-856 q^{-1} -523 q^{-2} +198 q^{-3} +1300 q^{-4} +1951 q^{-5} +1294 q^{-6} -609 q^{-7} -2681 q^{-8} -3456 q^{-9} -2456 q^{-10} +1087 q^{-11} +4970 q^{-12} +6313 q^{-13} +3413 q^{-14} -2521 q^{-15} -7902 q^{-16} -9913 q^{-17} -4600 q^{-18} +5066 q^{-19} +13055 q^{-20} +13151 q^{-21} +4322 q^{-22} -8584 q^{-23} -18998 q^{-24} -16515 q^{-25} -2300 q^{-26} +15477 q^{-27} +24091 q^{-28} +17301 q^{-29} -1647 q^{-30} -23264 q^{-31} -28939 q^{-32} -15195 q^{-33} +10547 q^{-34} +29799 q^{-35} +29961 q^{-36} +9877 q^{-37} -20547 q^{-38} -35841 q^{-39} -26993 q^{-40} +1815 q^{-41} +28935 q^{-42} +37062 q^{-43} +19851 q^{-44} -14457 q^{-45} -36622 q^{-46} -33554 q^{-47} -5576 q^{-48} +24928 q^{-49} +38699 q^{-50} +25382 q^{-51} -9057 q^{-52} -34412 q^{-53} -35586 q^{-54} -9898 q^{-55} +20901 q^{-56} +37694 q^{-57} +27646 q^{-58} -5207 q^{-59} -31543 q^{-60} -35634 q^{-61} -12640 q^{-62} +17120 q^{-63} +35796 q^{-64} +28945 q^{-65} -1280 q^{-66} -27854 q^{-67} -35025 q^{-68} -15869 q^{-69} +11907 q^{-70} +32552 q^{-71} +30215 q^{-72} +4490 q^{-73} -21635 q^{-74} -32940 q^{-75} -20007 q^{-76} +3792 q^{-77} +26096 q^{-78} +30067 q^{-79} +11841 q^{-80} -11680 q^{-81} -27089 q^{-82} -22755 q^{-83} -6197 q^{-84} +15291 q^{-85} +25517 q^{-86} +17400 q^{-87} +248 q^{-88} -16295 q^{-89} -20316 q^{-90} -13648 q^{-91} +2574 q^{-92} +15408 q^{-93} +16740 q^{-94} +8868 q^{-95} -3732 q^{-96} -11789 q^{-97} -13892 q^{-98} -6123 q^{-99} +3758 q^{-100} +9611 q^{-101} +9724 q^{-102} +4246 q^{-103} -2066 q^{-104} -7726 q^{-105} -6979 q^{-106} -2972 q^{-107} +1709 q^{-108} +4799 q^{-109} +4796 q^{-110} +2753 q^{-111} -1394 q^{-112} -3073 q^{-113} -3146 q^{-114} -1634 q^{-115} +344 q^{-116} +1802 q^{-117} +2310 q^{-118} +876 q^{-119} -93 q^{-120} -990 q^{-121} -1126 q^{-122} -794 q^{-123} -39 q^{-124} +677 q^{-125} +499 q^{-126} +424 q^{-127} +43 q^{-128} -185 q^{-129} -363 q^{-130} -227 q^{-131} +50 q^{-132} +44 q^{-133} +140 q^{-134} +88 q^{-135} +46 q^{-136} -66 q^{-137} -63 q^{-138} -4 q^{-139} -23 q^{-140} +15 q^{-141} +15 q^{-142} +26 q^{-143} -9 q^{-144} -11 q^{-145} +5 q^{-146} -7 q^{-147} +5 q^{-150} -3 q^{-152} + q^{-153} } |
| 7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.



