10 64: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 72: | ||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{20}-2 q^{19}+q^{18}+3 q^{17}-8 q^{16}+5 q^{15}+10 q^{14}-22 q^{13}+9 q^{12}+26 q^{11}-42 q^{10}+9 q^9+42 q^8-53 q^7+5 q^6+50 q^5-48 q^4-5 q^3+48 q^2-33 q-13+35 q^{-1} -16 q^{-2} -13 q^{-3} +18 q^{-4} -4 q^{-5} -7 q^{-6} +6 q^{-7} -2 q^{-9} + q^{-10} </math>|J3=<math>q^{39}-2 q^{38}+q^{37}+q^{35}-3 q^{34}+3 q^{33}+q^{32}-3 q^{31}-5 q^{30}+11 q^{29}+6 q^{28}-17 q^{27}-18 q^{26}+29 q^{25}+35 q^{24}-41 q^{23}-57 q^{22}+44 q^{21}+94 q^{20}-51 q^{19}-120 q^{18}+44 q^{17}+149 q^{16}-36 q^{15}-168 q^{14}+22 q^{13}+175 q^{12}-3 q^{11}-178 q^{10}-13 q^9+165 q^8+37 q^7-151 q^6-54 q^5+127 q^4+75 q^3-105 q^2-82 q+73+89 q^{-1} -47 q^{-2} -82 q^{-3} +20 q^{-4} +72 q^{-5} -4 q^{-6} -51 q^{-7} -11 q^{-8} +37 q^{-9} +11 q^{-10} -19 q^{-11} -13 q^{-12} +12 q^{-13} +7 q^{-14} -4 q^{-15} -6 q^{-16} +3 q^{-17} +2 q^{-18} -2 q^{-20} + q^{-21} </math>|J4=<math>q^{64}-2 q^{63}+q^{62}-2 q^{60}+6 q^{59}-6 q^{58}+3 q^{57}-q^{56}-8 q^{55}+19 q^{54}-12 q^{53}+4 q^{52}-6 q^{51}-24 q^{50}+46 q^{49}-8 q^{48}+14 q^{47}-26 q^{46}-76 q^{45}+71 q^{44}+21 q^{43}+86 q^{42}-29 q^{41}-203 q^{40}+17 q^{39}+38 q^{38}+267 q^{37}+73 q^{36}-357 q^{35}-154 q^{34}-56 q^{33}+485 q^{32}+313 q^{31}-420 q^{30}-361 q^{29}-269 q^{28}+610 q^{27}+569 q^{26}-358 q^{25}-472 q^{24}-489 q^{23}+593 q^{22}+714 q^{21}-237 q^{20}-453 q^{19}-625 q^{18}+487 q^{17}+726 q^{16}-109 q^{15}-345 q^{14}-683 q^{13}+332 q^{12}+651 q^{11}+26 q^{10}-183 q^9-682 q^8+130 q^7+504 q^6+161 q^5+24 q^4-607 q^3-80 q^2+288 q+225+220 q^{-1} -420 q^{-2} -196 q^{-3} +50 q^{-4} +160 q^{-5} +310 q^{-6} -183 q^{-7} -162 q^{-8} -93 q^{-9} +26 q^{-10} +246 q^{-11} -24 q^{-12} -50 q^{-13} -95 q^{-14} -54 q^{-15} +120 q^{-16} +13 q^{-17} +17 q^{-18} -39 q^{-19} -51 q^{-20} +40 q^{-21} + q^{-22} +20 q^{-23} -7 q^{-24} -23 q^{-25} +13 q^{-26} -4 q^{-27} +8 q^{-28} -8 q^{-30} +4 q^{-31} - q^{-32} +2 q^{-33} -2 q^{-35} + q^{-36} </math>|J5=<math>q^{95}-2 q^{94}+q^{93}-2 q^{91}+3 q^{90}+3 q^{89}-6 q^{88}+3 q^{86}-4 q^{85}+5 q^{84}+8 q^{83}-15 q^{82}-8 q^{81}+10 q^{80}+5 q^{79}+16 q^{78}+10 q^{77}-35 q^{76}-40 q^{75}+2 q^{74}+36 q^{73}+73 q^{72}+46 q^{71}-59 q^{70}-129 q^{69}-101 q^{68}+22 q^{67}+188 q^{66}+234 q^{65}+60 q^{64}-216 q^{63}-390 q^{62}-276 q^{61}+158 q^{60}+589 q^{59}+591 q^{58}+39 q^{57}-722 q^{56}-1016 q^{55}-424 q^{54}+747 q^{53}+1495 q^{52}+959 q^{51}-613 q^{50}-1886 q^{49}-1621 q^{48}+251 q^{47}+2213 q^{46}+2287 q^{45}+198 q^{44}-2294 q^{43}-2884 q^{42}-779 q^{41}+2261 q^{40}+3331 q^{39}+1296 q^{38}-2058 q^{37}-3582 q^{36}-1759 q^{35}+1789 q^{34}+3685 q^{33}+2082 q^{32}-1509 q^{31}-3638 q^{30}-2279 q^{29}+1221 q^{28}+3513 q^{27}+2403 q^{26}-985 q^{25}-3333 q^{24}-2437 q^{23}+718 q^{22}+3113 q^{21}+2480 q^{20}-466 q^{19}-2847 q^{18}-2479 q^{17}+130 q^{16}+2530 q^{15}+2490 q^{14}+205 q^{13}-2112 q^{12}-2422 q^{11}-617 q^{10}+1620 q^9+2302 q^8+971 q^7-1053 q^6-2016 q^5-1285 q^4+440 q^3+1658 q^2+1422 q+115-1142 q^{-1} -1411 q^{-2} -568 q^{-3} +622 q^{-4} +1196 q^{-5} +830 q^{-6} -109 q^{-7} -873 q^{-8} -891 q^{-9} -256 q^{-10} +468 q^{-11} +780 q^{-12} +479 q^{-13} -140 q^{-14} -549 q^{-15} -498 q^{-16} -128 q^{-17} +297 q^{-18} +437 q^{-19} +217 q^{-20} -88 q^{-21} -268 q^{-22} -246 q^{-23} -42 q^{-24} +149 q^{-25} +173 q^{-26} +88 q^{-27} -33 q^{-28} -113 q^{-29} -86 q^{-30} -4 q^{-31} +42 q^{-32} +60 q^{-33} +30 q^{-34} -21 q^{-35} -31 q^{-36} -14 q^{-37} -7 q^{-38} +14 q^{-39} +18 q^{-40} -2 q^{-41} -7 q^{-42} + q^{-43} -6 q^{-44} +7 q^{-46} - q^{-47} -4 q^{-48} +2 q^{-49} - q^{-51} +2 q^{-52} -2 q^{-54} + q^{-55} </math>|J6=<math>q^{132}-2 q^{131}+q^{130}-2 q^{128}+3 q^{127}+3 q^{125}-9 q^{124}+4 q^{123}+6 q^{122}-9 q^{121}+5 q^{120}-q^{119}+5 q^{118}-21 q^{117}+12 q^{116}+28 q^{115}-18 q^{114}-q^{113}-12 q^{112}-5 q^{111}-46 q^{110}+36 q^{109}+95 q^{108}-6 q^{107}-11 q^{106}-55 q^{105}-70 q^{104}-136 q^{103}+54 q^{102}+250 q^{101}+115 q^{100}+78 q^{99}-78 q^{98}-250 q^{97}-460 q^{96}-138 q^{95}+373 q^{94}+420 q^{93}+565 q^{92}+307 q^{91}-282 q^{90}-1115 q^{89}-1030 q^{88}-207 q^{87}+420 q^{86}+1540 q^{85}+1830 q^{84}+901 q^{83}-1303 q^{82}-2658 q^{81}-2479 q^{80}-1387 q^{79}+1819 q^{78}+4390 q^{77}+4475 q^{76}+865 q^{75}-3407 q^{74}-6065 q^{73}-6164 q^{72}-770 q^{71}+5905 q^{70}+9619 q^{69}+6318 q^{68}-980 q^{67}-8423 q^{66}-12462 q^{65}-6722 q^{64}+4056 q^{63}+13315 q^{62}+12984 q^{61}+4645 q^{60}-7352 q^{59}-16935 q^{58}-13440 q^{57}-732 q^{56}+13505 q^{55}+17469 q^{54}+10615 q^{53}-3626 q^{52}-17819 q^{51}-17725 q^{50}-5625 q^{49}+11158 q^{48}+18491 q^{47}+14208 q^{46}+122 q^{45}-16275 q^{44}-18820 q^{43}-8490 q^{42}+8563 q^{41}+17364 q^{40}+15200 q^{39}+2366 q^{38}-14261 q^{37}-18153 q^{36}-9527 q^{35}+6713 q^{34}+15742 q^{33}+15049 q^{32}+3644 q^{31}-12374 q^{30}-17117 q^{29}-10154 q^{28}+4891 q^{27}+13936 q^{26}+14878 q^{25}+5261 q^{24}-9825 q^{23}-15773 q^{22}-11212 q^{21}+1982 q^{20}+11116 q^{19}+14463 q^{18}+7704 q^{17}-5710 q^{16}-13151 q^{15}-12089 q^{14}-2093 q^{13}+6492 q^{12}+12538 q^{11}+9884 q^{10}-314 q^9-8413 q^8-11142 q^7-5761 q^6+600 q^5+8161 q^4+9787 q^3+4352 q^2-2308 q-7344-6703 q^{-1} -4227 q^{-2} +2325 q^{-3} +6462 q^{-4} +5807 q^{-5} +2531 q^{-6} -2018 q^{-7} -4171 q^{-8} -5527 q^{-9} -2077 q^{-10} +1666 q^{-11} +3662 q^{-12} +3761 q^{-13} +1750 q^{-14} -327 q^{-15} -3399 q^{-16} -2968 q^{-17} -1441 q^{-18} +453 q^{-19} +1962 q^{-20} +2263 q^{-21} +1800 q^{-22} -615 q^{-23} -1370 q^{-24} -1650 q^{-25} -1086 q^{-26} -89 q^{-27} +887 q^{-28} +1556 q^{-29} +553 q^{-30} +130 q^{-31} -538 q^{-32} -789 q^{-33} -702 q^{-34} -161 q^{-35} +551 q^{-36} +343 q^{-37} +441 q^{-38} +137 q^{-39} -125 q^{-40} -390 q^{-41} -295 q^{-42} +42 q^{-43} -23 q^{-44} +189 q^{-45} +167 q^{-46} +113 q^{-47} -88 q^{-48} -117 q^{-49} -11 q^{-50} -97 q^{-51} +17 q^{-52} +47 q^{-53} +81 q^{-54} -5 q^{-55} -22 q^{-56} +19 q^{-57} -47 q^{-58} -12 q^{-59} - q^{-60} +29 q^{-61} -2 q^{-62} -6 q^{-63} +17 q^{-64} -12 q^{-65} -4 q^{-66} -4 q^{-67} +9 q^{-68} -2 q^{-69} -5 q^{-70} +6 q^{-71} -2 q^{-72} - q^{-74} +2 q^{-75} -2 q^{-77} + q^{-78} </math>|J7=<math>q^{175}-2 q^{174}+q^{173}-2 q^{171}+3 q^{170}-5 q^{166}+7 q^{165}+q^{164}-10 q^{163}+5 q^{162}-q^{161}+2 q^{160}+4 q^{159}-12 q^{158}+20 q^{157}+9 q^{156}-29 q^{155}-7 q^{154}-14 q^{153}+17 q^{152}+28 q^{151}-15 q^{150}+48 q^{149}+22 q^{148}-68 q^{147}-61 q^{146}-74 q^{145}+35 q^{144}+104 q^{143}+49 q^{142}+141 q^{141}+57 q^{140}-143 q^{139}-215 q^{138}-292 q^{137}-61 q^{136}+195 q^{135}+273 q^{134}+500 q^{133}+330 q^{132}-96 q^{131}-451 q^{130}-885 q^{129}-707 q^{128}-181 q^{127}+383 q^{126}+1266 q^{125}+1442 q^{124}+961 q^{123}+68 q^{122}-1511 q^{121}-2373 q^{120}-2354 q^{119}-1383 q^{118}+1076 q^{117}+3233 q^{116}+4397 q^{115}+3942 q^{114}+725 q^{113}-3241 q^{112}-6744 q^{111}-8015 q^{110}-4617 q^{109}+1476 q^{108}+8450 q^{107}+13121 q^{106}+11128 q^{105}+3390 q^{104}-8191 q^{103}-18491 q^{102}-20064 q^{101}-11906 q^{100}+4494 q^{99}+22314 q^{98}+30320 q^{97}+24282 q^{96}+3819 q^{95}-22937 q^{94}-40285 q^{93}-39410 q^{92}-16724 q^{91}+18996 q^{90}+47661 q^{89}+55187 q^{88}+33522 q^{87}-9816 q^{86}-50940 q^{85}-69680 q^{84}-51972 q^{83}-3400 q^{82}+49104 q^{81}+80246 q^{80}+69826 q^{79}+19515 q^{78}-42627 q^{77}-86337 q^{76}-84793 q^{75}-35613 q^{74}+32873 q^{73}+87241 q^{72}+95416 q^{71}+50105 q^{70}-21616 q^{69}-84381 q^{68}-101462 q^{67}-61196 q^{66}+10937 q^{65}+79015 q^{64}+103264 q^{63}+68526 q^{62}-1962 q^{61}-72760 q^{60}-102281 q^{59}-72419 q^{58}-4479 q^{57}+66960 q^{56}+99609 q^{55}+73634 q^{54}+8684 q^{53}-62084 q^{52}-96506 q^{51}-73462 q^{50}-11224 q^{49}+58404 q^{48}+93613 q^{47}+72731 q^{46}+12971 q^{45}-55267 q^{44}-91136 q^{43}-72375 q^{42}-14914 q^{41}+52215 q^{40}+88942 q^{39}+72555 q^{38}+17753 q^{37}-48238 q^{36}-86531 q^{35}-73518 q^{34}-21949 q^{33}+42873 q^{32}+83188 q^{31}+74667 q^{30}+27708 q^{29}-35317 q^{28}-78308 q^{27}-75664 q^{26}-34580 q^{25}+25648 q^{24}+71055 q^{23}+75282 q^{22}+42067 q^{21}-13735 q^{20}-61137 q^{19}-72915 q^{18}-48897 q^{17}+643 q^{16}+48358 q^{15}+67315 q^{14}+53817 q^{13}+12779 q^{12}-33236 q^{11}-58352 q^{10}-55529 q^9-24607 q^8+17074 q^7+45832 q^6+52896 q^5+33399 q^4-1297 q^3-30988 q^2-45964 q-37551-11803 q^{-1} +15346 q^{-2} +35094 q^{-3} +36579 q^{-4} +20798 q^{-5} -1114 q^{-6} -22168 q^{-7} -30864 q^{-8} -24481 q^{-9} -9743 q^{-10} +9269 q^{-11} +21827 q^{-12} +23047 q^{-13} +15925 q^{-14} +1457 q^{-15} -11642 q^{-16} -17786 q^{-17} -17243 q^{-18} -8367 q^{-19} +2584 q^{-20} +10517 q^{-21} +14538 q^{-22} +11148 q^{-23} +3887 q^{-24} -3499 q^{-25} -9759 q^{-26} -10308 q^{-27} -6853 q^{-28} -1743 q^{-29} +4433 q^{-30} +7300 q^{-31} +7062 q^{-32} +4526 q^{-33} -395 q^{-34} -3756 q^{-35} -5216 q^{-36} -4960 q^{-37} -2026 q^{-38} +744 q^{-39} +2890 q^{-40} +3994 q^{-41} +2657 q^{-42} +987 q^{-43} -812 q^{-44} -2414 q^{-45} -2246 q^{-46} -1595 q^{-47} -431 q^{-48} +1025 q^{-49} +1360 q^{-50} +1422 q^{-51} +927 q^{-52} -154 q^{-53} -565 q^{-54} -900 q^{-55} -859 q^{-56} -264 q^{-57} +8 q^{-58} +441 q^{-59} +634 q^{-60} +303 q^{-61} +174 q^{-62} -105 q^{-63} -308 q^{-64} -217 q^{-65} -262 q^{-66} -55 q^{-67} +173 q^{-68} +117 q^{-69} +155 q^{-70} +75 q^{-71} -23 q^{-72} -9 q^{-73} -128 q^{-74} -94 q^{-75} +15 q^{-76} +6 q^{-77} +49 q^{-78} +32 q^{-79} +10 q^{-80} +41 q^{-81} -27 q^{-82} -42 q^{-83} -4 q^{-84} -9 q^{-85} +12 q^{-86} +3 q^{-87} -4 q^{-88} +22 q^{-89} -10 q^{-91} -2 q^{-92} -4 q^{-93} +5 q^{-94} -6 q^{-96} +5 q^{-97} +2 q^{-98} -2 q^{-99} - q^{-101} +2 q^{-102} -2 q^{-104} + q^{-105} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 82: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 64]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 64]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 2, 9, 1], X[10, 4, 11, 3], X[2, 10, 3, 9], X[18, 12, 19, 11], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 2, 9, 1], X[10, 4, 11, 3], X[2, 10, 3, 9], X[18, 12, 19, 11], |
|||
X[14, 5, 15, 6], X[4, 17, 5, 18], X[16, 7, 17, 8], X[6, 15, 7, 16], |
X[14, 5, 15, 6], X[4, 17, 5, 18], X[16, 7, 17, 8], X[6, 15, 7, 16], |
||
X[20, 14, 1, 13], X[12, 20, 13, 19]]</nowiki></pre></td></tr> |
X[20, 14, 1, 13], X[12, 20, 13, 19]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 64]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 64]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -3, 2, -6, 5, -8, 7, -1, 3, -2, 4, -10, 9, -5, 8, -7, 6, |
|||
-4, 10, -9]</nowiki></pre></td></tr> |
-4, 10, -9]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 64]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 64]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[8, 10, 14, 16, 2, 18, 20, 6, 4, 12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 64]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, -2, 1, 1, 1, -2, -2, -2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, -2, 1, 1, 1, -2, -2, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 64]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 64]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 64]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_64_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 64]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 64]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 6 10 2 3 4 |
|||
-11 - t + -- - -- + -- + 10 t - 6 t + 3 t - t |
-11 - t + -- - -- + -- + 10 t - 6 t + 3 t - t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 64]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 64]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 |
|||
1 - 3 z - 8 z - 5 z - z</nowiki></pre></td></tr> |
1 - 3 z - 8 z - 5 z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 64]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{51, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 64]], KnotSignature[Knot[10, 64]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{51, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 64]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 4 2 3 4 5 6 7 |
|||
-6 + q - -- + - + 8 q - 8 q + 8 q - 7 q + 4 q - 2 q + q |
-6 + q - -- + - + 8 q - 8 q + 8 q - 7 q + 4 q - 2 q + q |
||
2 q |
2 q |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 64]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 64]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 64]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 2 2 4 6 8 12 14 16 20 |
|||
q + -- + q - 2 q + 2 q - 2 q - q - q + 2 q + q |
q + -- + q - 2 q + 2 q - 2 q - q - q + 2 q + q |
||
4 |
4 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 64]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 64]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 6 |
|||
3 6 2 8 z 19 z 4 5 z 18 z 6 z |
|||
4 + -- - -- + 8 z + ---- - ----- + 5 z + ---- - ----- + z + -- - |
|||
4 2 4 2 4 2 4 |
|||
a a a a a a a |
|||
6 8 |
|||
7 z z |
|||
---- - -- |
|||
2 2 |
|||
a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 64]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
|||
3 6 4 z 6 z 3 z 2 2 z 3 z 8 z |
3 6 4 z 6 z 3 z 2 2 z 3 z 8 z |
||
4 + -- + -- - --- - --- - --- - a z - 9 z - ---- + ---- - ---- - |
4 + -- + -- - --- - --- - --- - a z - 9 z - ---- + ---- - ---- - |
||
Line 119: | Line 187: | ||
4 2 3 a |
4 2 3 a |
||
a a a</nowiki></pre></td></tr> |
a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 64]], Vassiliev[3][Knot[10, 64]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 64]], Vassiliev[3][Knot[10, 64]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, -3}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 3 1 3 3 q |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 64]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 3 1 3 3 q |
|||
5 q + 4 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
5 q + 4 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
||
7 4 5 3 3 3 3 2 2 q t t |
7 4 5 3 3 3 3 2 2 q t t |
||
Line 132: | Line 202: | ||
11 4 11 5 13 5 15 6 |
11 4 11 5 13 5 15 6 |
||
3 q t + q t + q t + q t</nowiki></pre></td></tr> |
3 q t + q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 64], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 2 6 7 4 18 13 16 35 2 |
|||
-13 + q - -- + -- - -- - -- + -- - -- - -- + -- - 33 q + 48 q - |
|||
9 7 6 5 4 3 2 q |
|||
q q q q q q q |
|||
3 4 5 6 7 8 9 10 |
|||
5 q - 48 q + 50 q + 5 q - 53 q + 42 q + 9 q - 42 q + |
|||
11 12 13 14 15 16 17 18 |
|||
26 q + 9 q - 22 q + 10 q + 5 q - 8 q + 3 q + q - |
|||
19 20 |
|||
2 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:18, 29 August 2005
|
|
Visit 10 64's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 64's page at Knotilus! Visit 10 64's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X8291 X10,4,11,3 X2,10,3,9 X18,12,19,11 X14,5,15,6 X4,17,5,18 X16,7,17,8 X6,15,7,16 X20,14,1,13 X12,20,13,19 |
Gauss code | 1, -3, 2, -6, 5, -8, 7, -1, 3, -2, 4, -10, 9, -5, 8, -7, 6, -4, 10, -9 |
Dowker-Thistlethwaite code | 8 10 14 16 2 18 20 6 4 12 |
Conway Notation | [31,3,3] |
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 64"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 51, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (-3, -3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 64. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.