In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 20]] |
Out[2]= | PD[X[1, 4, 2, 5], X[11, 14, 12, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],
X[5, 18, 6, 19], X[7, 20, 8, 1], X[19, 6, 20, 7], X[9, 16, 10, 17],
X[15, 10, 16, 11], X[17, 8, 18, 9]] |
In[3]:= | GaussCode[Knot[10, 20]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -5, 7, -6, 10, -8, 9, -2, 3, -4, 2, -9, 8, -10,
5, -7, 6] |
In[4]:= | DTCode[Knot[10, 20]] |
Out[4]= | DTCode[4, 12, 18, 20, 16, 14, 2, 10, 8, 6] |
In[5]:= | br = BR[Knot[10, 20]] |
Out[5]= | BR[5, {-1, -1, -1, -1, -2, 1, -2, -3, 2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 20]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 20]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 20]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 20]][t] |
Out[10]= | 3 9 2
-11 - -- + - + 9 t - 3 t
2 t
t |
In[11]:= | Conway[Knot[10, 20]][z] |
Out[11]= | 2 4
1 - 3 z - 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 20], Knot[10, 162], Knot[11, NonAlternating, 117]} |
In[13]:= | {KnotDet[Knot[10, 20]], KnotSignature[Knot[10, 20]]} |
Out[13]= | {35, -2} |
In[14]:= | Jones[Knot[10, 20]][q] |
Out[14]= | -9 2 3 4 5 6 5 4 3
-1 + q - -- + -- - -- + -- - -- + -- - -- + - + q
8 7 6 5 4 3 2 q
q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 20]} |
In[16]:= | A2Invariant[Knot[10, 20]][q] |
Out[16]= | -28 -22 -20 -14 -10 -4 2 2 4
1 + q + q - q - q - q - q + -- + q + q
2
q |
In[17]:= | HOMFLYPT[Knot[10, 20]][a, z] |
Out[17]= | 2 6 8 2 2 2 4 2 6 2 8 2 2 4
2 - a - a + a + z - 2 a z - a z - 2 a z + a z - a z -
4 4 6 4
a z - a z |
In[18]:= | Kauffman[Knot[10, 20]][a, z] |
Out[18]= | 2 6 8 3 5 7 9 2
2 + a + a + a - a z - a z + 3 a z + 2 a z - a z - 3 z -
2 2 6 2 8 2 10 2 3 3 3 5 3
2 a z - 9 a z - 5 a z + 3 a z - a z + 2 a z - 8 a z -
7 3 9 3 4 4 4 6 4 8 4 10 4
4 a z + 7 a z + z + 3 a z + 17 a z + 9 a z - 4 a z +
5 3 5 5 5 7 5 9 5 2 6 4 6
a z - a z + 9 a z + 3 a z - 8 a z + a z - 2 a z -
6 6 8 6 10 6 3 7 5 7 7 7 9 7
12 a z - 8 a z + a z + a z - 4 a z - 3 a z + 2 a z +
4 8 6 8 8 8 5 9 7 9
a z + 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 20]], Vassiliev[3][Knot[10, 20]]} |
Out[19]= | {-3, 6} |
In[20]:= | Kh[Knot[10, 20]][q, t] |
Out[20]= | -3 3 1 1 1 2 1 2
q + - + ------ + ------ + ------ + ------ + ------ + ------ +
q 19 8 17 7 15 7 15 6 13 6 13 5
q t q t q t q t q t q t
2 3 2 3 3 2 3 2
------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- +
11 5 11 4 9 4 9 3 7 3 7 2 5 2 5
q t q t q t q t q t q t q t q t
2 t 3 2
---- + - + q t
3 q
q t |
In[21]:= | ColouredJones[Knot[10, 20], 2][q] |
Out[21]= | -26 2 5 6 3 12 7 9 17 5 15
-3 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- +
25 23 22 21 20 19 18 17 16 15
q q q q q q q q q q
19 -13 19 19 2 19 15 2 13 10 7 6 1
--- - q - --- + --- + --- - -- + -- + -- - -- + -- - -- + -- - - +
14 12 11 10 9 8 7 6 5 3 2 q
q q q q q q q q q q q
3 4
3 q - q + q |