6 3: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
Line 178: Line 179:
</table>
</table>


{| width=100%
See/edit the [[Rolfsen_Splice_Template]].
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}


[[Category:Knot Page]]
[[Category:Knot Page]]

Revision as of 20:04, 29 August 2005

6 2.gif

6_2

7 1.gif

7_1

6 3.gif Visit 6 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 6 3's page at Knotilus!

Visit 6 3's page at the original Knot Atlas!

The Eskimo bowline knot of practical knot tying deforms to 6_3. The standard bowline is at 6_2.



3D depiction
Irish knot, sum of four 6.3

Knot presentations

Planar diagram presentation X4251 X8493 X12,9,1,10 X10,5,11,6 X6,11,7,12 X2837
Gauss code 1, -6, 2, -1, 4, -5, 6, -2, 3, -4, 5, -3
Dowker-Thistlethwaite code 4 8 10 2 12 6
Conway Notation [2112]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif

Length is 6, width is 3.

Braid index is 3.

A Morse Link Presentation:

6 3 ML.gif

Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index [math]\displaystyle{ \{3,4\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-4]
Hyperbolic Volume 5.69302
A-Polynomial See Data:6 3/A-polynomial

[edit Notes for 6 3's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 0

[edit Notes for 6 3's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^2-3 t+5-3 t^{-1} + t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ z^4+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 13, 0 }
Jones polynomial [math]\displaystyle{ -q^3+2 q^2-2 q+3-2 q^{-1} +2 q^{-2} - q^{-3} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^4-a^2 z^2-z^2 a^{-2} +3 z^2-a^2- a^{-2} +3 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a z^5+z^5 a^{-1} +2 a^2 z^4+2 z^4 a^{-2} +4 z^4+a^3 z^3+a z^3+z^3 a^{-1} +z^3 a^{-3} -3 a^2 z^2-3 z^2 a^{-2} -6 z^2-a^3 z-2 a z-2 z a^{-1} -z a^{-3} +a^2+ a^{-2} +3 }[/math]
The A2 invariant [math]\displaystyle{ -q^{10}+2 q^2+1+2 q^{-2} - q^{-10} }[/math]
The G2 invariant [math]\displaystyle{ q^{52}-q^{50}+2 q^{48}-2 q^{46}-q^{44}+q^{42}-3 q^{40}+4 q^{38}-4 q^{36}+q^{34}-3 q^{30}+3 q^{28}-3 q^{26}+q^{24}+q^{22}-2 q^{20}+q^{18}+q^{16}-q^{14}+4 q^{12}-3 q^{10}+3 q^8+q^6-q^4+6 q^2-5+6 q^{-2} - q^{-4} + q^{-6} +3 q^{-8} -3 q^{-10} +4 q^{-12} - q^{-14} + q^{-16} + q^{-18} -2 q^{-20} + q^{-22} + q^{-24} -3 q^{-26} +3 q^{-28} -3 q^{-30} + q^{-34} -4 q^{-36} +4 q^{-38} -3 q^{-40} + q^{-42} - q^{-44} -2 q^{-46} +2 q^{-48} - q^{-50} + q^{-52} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n12, ...}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {...}

Vassiliev invariants

V2 and V3: (1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{14}{3} }[/math] [math]\displaystyle{ -\frac{14}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ \frac{56}{3} }[/math] [math]\displaystyle{ -\frac{56}{3} }[/math] [math]\displaystyle{ \frac{511}{30} }[/math] [math]\displaystyle{ \frac{418}{15} }[/math] [math]\displaystyle{ -\frac{1858}{45} }[/math] [math]\displaystyle{ \frac{65}{18} }[/math] [math]\displaystyle{ -\frac{449}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 6 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-10123χ
7      1-1
5     1 1
3    11 0
1   21  1
-1  12   1
-3 11    0
-5 1     1
-71      -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials