K11a1: Difference between revisions
No edit summary |
No edit summary |
||
Line 68: | Line 68: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 1]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 1]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 1]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 12 30 2 3 |
||
-39 + |
-39 + -- - -- + -- + 30 t - 12 t + 2 t |
||
3 2 t |
|||
t t</nowiki></pre></td></tr> |
|||
2 3 |
|||
12 Alternating + 2 Alternating</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 1]][z]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 1]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 |
||
Line 142: | Line 139: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 2}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, Alternating, 1]][q, t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, Alternating, 1]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 2 1 5 2 7 5 q |
||
--------------- + ----- |
10 q + 8 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
||
7 4 5 3 3 3 3 2 2 q t t |
|||
q t q t q t q t q t |
|||
2 7 5 q 3 |
|||
-------------- + ------------- + 10 q + ----------- + 8 q + |
|||
2 Alternating q Alternating |
|||
Alternating q |
|||
3 5 2 5 |
|||
11 Alternating q + 9 Alternating q + 10 Alternating q + |
|||
2 7 3 7 3 9 |
|||
11 Alternating q + 8 Alternating q + 10 Alternating q + |
|||
4 9 4 11 5 11 |
|||
6 Alternating q + 8 Alternating q + 3 Alternating q + |
|||
3 5 5 2 7 2 7 3 9 3 |
|||
11 q t + 9 q t + 10 q t + 11 q t + 8 q t + 10 q t + |
|||
9 4 11 4 11 5 13 5 13 6 15 6 17 7 |
|||
6 q t + 8 q t + 3 q t + 6 q t + q t + 3 q t + q t</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
Revision as of 19:53, 28 August 2005
|
|
Visit K11a1's page at Knotilus!
Visit K11a1's page at the original Knot Atlas! | |
K11a1 Quick Notes |
Knot presentations
Planar diagram presentation | X4251 X8394 X10,6,11,5 X14,7,15,8 X2,9,3,10 X16,12,17,11 X20,14,21,13 X6,15,7,16 X22,18,1,17 X12,20,13,19 X18,22,19,21 |
Gauss code | 1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -10, 7, -4, 8, -6, 9, -11, 10, -7, 11, -9 |
Dowker-Thistlethwaite code | 4 8 10 14 2 16 20 6 22 12 18 |
Conway Notation | [221,211,2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 127, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (0, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[11, Alternating, 1]] |
Out[2]= | 11 |
In[3]:= | PD[Knot[11, Alternating, 1]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[14, 7, 15, 8],X[2, 9, 3, 10], X[16, 12, 17, 11], X[20, 14, 21, 13], X[6, 15, 7, 16], X[22, 18, 1, 17], X[12, 20, 13, 19],X[18, 22, 19, 21]] |
In[4]:= | GaussCode[Knot[11, Alternating, 1]] |
Out[4]= | GaussCode[1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -10, 7, -4, 8, -6, 9, -11, 10, -7, 11, -9] |
In[5]:= | BR[Knot[11, Alternating, 1]] |
Out[5]= | BR[Knot[11, Alternating, 1]] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 1]][t] |
Out[6]= | 2 12 30 2 3 |
In[7]:= | Conway[Knot[11, Alternating, 1]][z] |
Out[7]= | 6 1 + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[11, Alternating, 1], Knot[11, Alternating, 122], Knot[11, Alternating, 149]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 1]], KnotSignature[Knot[11, Alternating, 1]]} |
Out[9]= | {127, 2} |
In[10]:= | J=Jones[Knot[11, Alternating, 1]][q] |
Out[10]= | -3 3 7 2 3 4 5 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 1], Knot[11, Alternating, 149]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 1]][q] |
Out[12]= | -10 -6 3 2 2 4 6 8 10 12 |
In[13]:= | Kauffman[Knot[11, Alternating, 1]][a, z] |
Out[13]= | 2 2-6 2 2 2 z 4 z 4 z 4 z 2 z 4 z |
In[14]:= | {Vassiliev[2][Knot[11, Alternating, 1]], Vassiliev[3][Knot[11, Alternating, 1]]} |
Out[14]= | {0, 2} |
In[15]:= | Kh[Knot[11, Alternating, 1]][q, t] |
Out[15]= | 3 1 2 1 5 2 7 5 q |