T(33,2): Difference between revisions
| No edit summary | No edit summary | ||
| Line 1: | Line 1: | ||
| <!--  --> | <!--  --> | ||
| <!-- This knot page was produced from [[Torus Knots Splice Template]] --> | |||
| <!--  --> | <!--  --> | ||
| <!-- --> | |||
| <span id="top"></span> | <span id="top"></span> | ||
| <!-- --> | |||
| {{Knot Navigation Links|ext=jpg}} | {{Knot Navigation Links|ext=jpg}} | ||
| ⚫ | {{Torus Knot Page Header|m=33|n=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-26,27,-28,29,-30,31,-32,33,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,26,-27,28,-29,30,-31,32,-33,1,-2,3/goTop.html}} | ||
| {| align=left | |||
| |- valign=top | |||
| |[[Image:{{PAGENAME}}.jpg]] | |||
| ⚫ | |||
| {{:{{PAGENAME}} Quick Notes}} | |||
| |} | |||
| <br style="clear:both" /> | <br style="clear:both" /> | ||
| Line 23: | Line 17: | ||
| {{Vassiliev Invariants}} | {{Vassiliev Invariants}} | ||
| {{Khovanov Homology|table=<table border=1> | |||
| The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. | |||
| <center><table border=1> | |||
| <tr align=center> | <tr align=center> | ||
| <td width=5.26316%><table cellpadding=0 cellspacing=0> | <td width=5.26316%><table cellpadding=0 cellspacing=0> | ||
| Line 70: | Line 60: | ||
| <tr align=center><td>33</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | <tr align=center><td>33</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | ||
| <tr align=center><td>31</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | <tr align=center><td>31</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | ||
| </table> | </table>}} | ||
| {{Computer Talk Header}} | {{Computer Talk Header}} | ||
| Line 119: | Line 109: | ||
|    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr> |    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[33, 2]][t]</nowiki></pre></td></tr> | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[33, 2]][t]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -16     | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>               -16              -15              -14              -13 | ||
| 1 +  | 1 + Alternating    - Alternating    + Alternating    - Alternating    +  | ||
|              -12              -11              -10              -9 | |||
|   Alternating    - Alternating    + Alternating    - Alternating   +  | |||
| ⚫ | |||
|    8     |              -8              -7              -6              -5 | ||
|   Alternating   - Alternating   + Alternating   - Alternating   +  | |||
| ⚫ | |||
|   Alternating   - Alternating   + Alternating   - ----------- -  | |||
|                                                   Alternating | |||
|                            2              3              4 | |||
|   Alternating + Alternating  - Alternating  + Alternating  -  | |||
|              5              6              7              8 | |||
|   Alternating  + Alternating  - Alternating  + Alternating  -  | |||
|              9              10              11              12 | |||
|   Alternating  + Alternating   - Alternating   + Alternating   -  | |||
|              13              14              15              16 | |||
|   Alternating   + Alternating   - Alternating   + Alternating</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[33, 2]][z]</nowiki></pre></td></tr> | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[33, 2]][z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>         2         4          6           8           10           12 | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>         2         4          6           8           10           12 | ||
| Line 160: | Line 165: | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1496}</nowiki></pre></td></tr> | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1496}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[33, 2]][q, t]</nowiki></pre></td></tr> | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[33, 2]][q, t]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 31    33     | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 31    33              2  35              3  39              4  39 | ||
| q   + q   +  | q   + q   + Alternating  q   + Alternating  q   + Alternating  q   +  | ||
|              5  43              6  43              7  47 | |||
|   Alternating  q   + Alternating  q   + Alternating  q   +  | |||
|              8  47              9  51              10  51 | |||
|   Alternating  q   + Alternating  q   + Alternating   q   +  | |||
|              11  55              12  55              13  59 | |||
|   Alternating   q   + Alternating   q   + Alternating   q   +  | |||
|              14  59              15  63              16  63 | |||
|   Alternating   q   + Alternating   q   + Alternating   q   +  | |||
|              17  67              18  67              19  71 | |||
|   Alternating   q   + Alternating   q   + Alternating   q   +  | |||
|              20  71              21  75              22  75 | |||
|   Alternating   q   + Alternating   q   + Alternating   q   +  | |||
|              23  79              24  79              25  83 | |||
|   Alternating   q   + Alternating   q   + Alternating   q   +  | |||
|              26  83              27  87              28  87 | |||
|   Alternating   q   + Alternating   q   + Alternating   q   +  | |||
|              29  91              30  91              31  95 | |||
|   Alternating   q   + Alternating   q   + Alternating   q   +  | |||
|              32  95              33  99 | |||
|   Alternating   q   + Alternating   q</nowiki></pre></td></tr> | |||
| </table> | </table> | ||
|  [[Category:Knot Page]] | |||
Revision as of 20:46, 28 August 2005
|  |  | 
|   | Visit [[[:Template:KnotilusURL]] T(33,2)'s page] at Knotilus! Visit T(33,2)'s page at the original Knot Atlas! | 
| T(33,2) Quick Notes | 
T(33,2) Further Notes and Views
Knot presentations
| Planar diagram presentation | X31,65,32,64 X65,33,66,32 X33,1,34,66 X1,35,2,34 X35,3,36,2 X3,37,4,36 X37,5,38,4 X5,39,6,38 X39,7,40,6 X7,41,8,40 X41,9,42,8 X9,43,10,42 X43,11,44,10 X11,45,12,44 X45,13,46,12 X13,47,14,46 X47,15,48,14 X15,49,16,48 X49,17,50,16 X17,51,18,50 X51,19,52,18 X19,53,20,52 X53,21,54,20 X21,55,22,54 X55,23,56,22 X23,57,24,56 X57,25,58,24 X25,59,26,58 X59,27,60,26 X27,61,28,60 X61,29,62,28 X29,63,30,62 X63,31,64,30 | 
| Gauss code | -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 1, -2, 3 | 
| Dowker-Thistlethwaite code | 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 | 
| Conway Notation | Data:T(33,2)/Conway Notation | 
Polynomial invariants
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["T(33,2)"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 33, 32 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (136, 1496) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 32 is the signature of T(33,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[TorusKnot[33, 2]] | 
| Out[2]= | 33 | 
| In[3]:= | PD[TorusKnot[33, 2]] | 
| Out[3]= | PD[X[31, 65, 32, 64], X[65, 33, 66, 32], X[33, 1, 34, 66],X[1, 35, 2, 34], X[35, 3, 36, 2], X[3, 37, 4, 36], X[37, 5, 38, 4], X[5, 39, 6, 38], X[39, 7, 40, 6], X[7, 41, 8, 40], X[41, 9, 42, 8], X[9, 43, 10, 42], X[43, 11, 44, 10], X[11, 45, 12, 44], X[45, 13, 46, 12], X[13, 47, 14, 46], X[47, 15, 48, 14], X[15, 49, 16, 48], X[49, 17, 50, 16], X[17, 51, 18, 50], X[51, 19, 52, 18], X[19, 53, 20, 52], X[53, 21, 54, 20], X[21, 55, 22, 54], X[55, 23, 56, 22], X[23, 57, 24, 56], X[57, 25, 58, 24], X[25, 59, 26, 58], X[59, 27, 60, 26], X[27, 61, 28, 60], X[61, 29, 62, 28], X[29, 63, 30, 62],X[63, 31, 64, 30]] | 
| In[4]:= | GaussCode[TorusKnot[33, 2]] | 
| Out[4]= | GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18,19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32,-33, 1, -2, 3] | 
| In[5]:= | BR[TorusKnot[33, 2]] | 
| Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] | 
| In[6]:= | alex = Alexander[TorusKnot[33, 2]][t] | 
| Out[6]= | -16 -15 -14 -13 | 
| In[7]:= | Conway[TorusKnot[33, 2]][z] | 
| Out[7]= | 2 4 6 8 10 12 | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {} | 
| In[9]:= | {KnotDet[TorusKnot[33, 2]], KnotSignature[TorusKnot[33, 2]]} | 
| Out[9]= | {33, 32} | 
| In[10]:= | J=Jones[TorusKnot[33, 2]][q] | 
| Out[10]= | 16 18 19 20 21 22 23 24 25 26 27 28 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {} | 
| In[12]:= | A2Invariant[TorusKnot[33, 2]][q] | 
| Out[12]= | NotAvailable | 
| In[13]:= | Kauffman[TorusKnot[33, 2]][a, z] | 
| Out[13]= | NotAvailable | 
| In[14]:= | {Vassiliev[2][TorusKnot[33, 2]], Vassiliev[3][TorusKnot[33, 2]]} | 
| Out[14]= | {0, 1496} | 
| In[15]:= | Kh[TorusKnot[33, 2]][q, t] | 
| Out[15]= | 31 33 2 35 3 39 4 39 | 


