T(23,2): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 5: | Line 5: | ||
<span id="top"></span> |
<span id="top"></span> |
||
{{Knot Navigation Links|prev=T(11,3) |
{{Knot Navigation Links|prev=T(11,3)|next=T(6,5)|imageext=jpg}} |
||
{| align=left |
|||
⚫ | Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-16,17,-18,19,-20,21,-22,23,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15/goTop.html T(23,2)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
||
|- valign=top |
|||
|[[Image:T(23,2).jpg]] |
|||
⚫ | |Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-16,17,-18,19,-20,21,-22,23,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15/goTop.html T(23,2)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/23.2.html T(23,2)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/23.2.html T(23,2)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
||
{{:T(23,2) Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:T(23,2) Further Notes and Views}} |
|||
===Knot presentations=== |
===Knot presentations=== |
||
Line 23: | Line 33: | ||
|style="padding-left: 1em;" | 24 26 28 30 32 34 36 38 40 42 44 46 2 4 6 8 10 12 14 16 18 20 22 |
|style="padding-left: 1em;" | 24 26 28 30 32 34 36 38 40 42 44 46 2 4 6 8 10 12 14 16 18 20 22 |
||
|} |
|} |
||
===Polynomial invariants=== |
|||
{{Polynomial Invariants|name=T(23,2)}} |
{{Polynomial Invariants|name=T(23,2)}} |
||
Line 32: | Line 40: | ||
|- |
|- |
||
|'''V<sub>2</sub> and V<sub>3</sub>''' |
|'''V<sub>2</sub> and V<sub>3</sub>''' |
||
|style="padding-left: 1em;" | {0, 506} |
|style="padding-left: 1em;" | {0, 506} |
||
|} |
|} |
||
===[[Khovanov Homology]]=== |
|||
⚫ | |||
⚫ | The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>22 is the signature of T(23,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
||
<center><table border=1> |
<center><table border=1> |
||
Line 81: | Line 91: | ||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr> |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[23, 2]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[23, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>23</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[23, 2]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[23, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[9, 33, 10, 32], X[33, 11, 34, 10], X[11, 35, 12, 34], |
||
X[35, 13, 36, 12], X[13, 37, 14, 36], X[37, 15, 38, 14], |
X[35, 13, 36, 12], X[13, 37, 14, 36], X[37, 15, 38, 14], |
||
Line 97: | Line 107: | ||
X[5, 29, 6, 28], X[29, 7, 30, 6], X[7, 31, 8, 30], X[31, 9, 32, 8]]</nowiki></pre></td></tr> |
X[5, 29, 6, 28], X[29, 7, 30, 6], X[7, 31, 8, 30], X[31, 9, 32, 8]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[23, 2]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[23, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-16, 17, -18, 19, -20, 21, -22, 23, -1, 2, -3, 4, -5, 6, -7, |
||
8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, |
8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, |
||
Line 103: | Line 113: | ||
1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15]</nowiki></pre></td></tr> |
1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[23, 2]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[23, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
||
1, 1}]</nowiki></pre></td></tr> |
1, 1}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[23, 2]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[23, 2]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 1 |
||
-1 + t - t + t - t + t - t + t - t + t - t + - + |
-1 + t - t + t - t + t - t + t - t + t - t + - + |
||
t |
t |
||
Line 114: | Line 124: | ||
t - t + t - t + t - t + t - t + t - t + t</nowiki></pre></td></tr> |
t - t + t - t + t - t + t - t + t - t + t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[23, 2]][z]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[23, 2]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 |
||
1 + 66 z + 715 z + 3003 z + 6435 z + 8008 z + 6188 z + |
1 + 66 z + 715 z + 3003 z + 6435 z + 8008 z + 6188 z + |
||
Line 120: | Line 130: | ||
3060 z + 969 z + 190 z + 21 z + z</nowiki></pre></td></tr> |
3060 z + 969 z + 190 z + 21 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[23, 2]], KnotSignature[TorusKnot[23, 2]]}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[23, 2]], KnotSignature[TorusKnot[23, 2]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{23, 22}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[23, 2]][q]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[23, 2]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 11 13 14 15 16 17 18 19 20 21 22 23 |
||
q + q - q + q - q + q - q + q - q + q - q + q - |
q + q - q + q - q + q - q + q - q + q - q + q - |
||
Line 130: | Line 140: | ||
q + q - q + q - q + q - q + q - q + q - q</nowiki></pre></td></tr> |
q + q - q + q - q + q - q + q - q + q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[23, 2]][q]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[23, 2]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[23, 2]][a, z]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[23, 2]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[23, 2]], Vassiliev[3][TorusKnot[23, 2]]}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[23, 2]], Vassiliev[3][TorusKnot[23, 2]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 506}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[23, 2]][q, t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[23, 2]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 21 23 25 2 29 3 29 4 33 5 33 6 37 7 |
||
q + q + q t + q t + q t + q t + q t + q t + |
q + q + q t + q t + q t + q t + q t + q t + |
||
Revision as of 21:46, 26 August 2005
[[Image:T(11,3).{{{ext}}}|80px|link=T(11,3)]] |
[[Image:T(6,5).{{{ext}}}|80px|link=T(6,5)]] |
Visit T(23,2)'s page at Knotilus!
Visit T(23,2)'s page at the original Knot Atlas! |
T(23,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X9,33,10,32 X33,11,34,10 X11,35,12,34 X35,13,36,12 X13,37,14,36 X37,15,38,14 X15,39,16,38 X39,17,40,16 X17,41,18,40 X41,19,42,18 X19,43,20,42 X43,21,44,20 X21,45,22,44 X45,23,46,22 X23,1,24,46 X1,25,2,24 X25,3,26,2 X3,27,4,26 X27,5,28,4 X5,29,6,28 X29,7,30,6 X7,31,8,30 X31,9,32,8 |
Gauss code | {-16, 17, -18, 19, -20, 21, -22, 23, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15} |
Dowker-Thistlethwaite code | 24 26 28 30 32 34 36 38 40 42 44 46 2 4 6 8 10 12 14 16 18 20 22 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(23,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 23, 22 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3 | {0, 506} |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 22 is the signature of T(23,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | χ | |||||||||
69 | 1 | -1 | ||||||||||||||||||||||||||||||||
67 | 0 | |||||||||||||||||||||||||||||||||
65 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
63 | 0 | |||||||||||||||||||||||||||||||||
61 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
59 | 0 | |||||||||||||||||||||||||||||||||
57 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
55 | 0 | |||||||||||||||||||||||||||||||||
53 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
51 | 0 | |||||||||||||||||||||||||||||||||
49 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
47 | 0 | |||||||||||||||||||||||||||||||||
45 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
43 | 0 | |||||||||||||||||||||||||||||||||
41 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
39 | 0 | |||||||||||||||||||||||||||||||||
37 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
35 | 0 | |||||||||||||||||||||||||||||||||
33 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
31 | 0 | |||||||||||||||||||||||||||||||||
29 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
27 | 0 | |||||||||||||||||||||||||||||||||
25 | 1 | 1 | ||||||||||||||||||||||||||||||||
23 | 1 | 1 | ||||||||||||||||||||||||||||||||
21 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[23, 2]] |
Out[2]= | 23 |
In[3]:= | PD[TorusKnot[23, 2]] |
Out[3]= | PD[X[9, 33, 10, 32], X[33, 11, 34, 10], X[11, 35, 12, 34],X[35, 13, 36, 12], X[13, 37, 14, 36], X[37, 15, 38, 14], X[15, 39, 16, 38], X[39, 17, 40, 16], X[17, 41, 18, 40], X[41, 19, 42, 18], X[19, 43, 20, 42], X[43, 21, 44, 20], X[21, 45, 22, 44], X[45, 23, 46, 22], X[23, 1, 24, 46], X[1, 25, 2, 24], X[25, 3, 26, 2], X[3, 27, 4, 26], X[27, 5, 28, 4],X[5, 29, 6, 28], X[29, 7, 30, 6], X[7, 31, 8, 30], X[31, 9, 32, 8]] |
In[4]:= | GaussCode[TorusKnot[23, 2]] |
Out[4]= | GaussCode[-16, 17, -18, 19, -20, 21, -22, 23, -1, 2, -3, 4, -5, 6, -7,8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23,1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15] |
In[5]:= | BR[TorusKnot[23, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[23, 2]][t] |
Out[6]= | -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 1 |
In[7]:= | Conway[TorusKnot[23, 2]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[23, 2]], KnotSignature[TorusKnot[23, 2]]} |
Out[9]= | {23, 22} |
In[10]:= | J=Jones[TorusKnot[23, 2]][q] |
Out[10]= | 11 13 14 15 16 17 18 19 20 21 22 23 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[23, 2]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[23, 2]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[23, 2]], Vassiliev[3][TorusKnot[23, 2]]} |
Out[14]= | {0, 506} |
In[15]:= | Kh[TorusKnot[23, 2]][q, t] |
Out[15]= | 21 23 25 2 29 3 29 4 33 5 33 6 37 7 |