T(6,5): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 5: | Line 5: | ||
<span id="top"></span> |
<span id="top"></span> |
||
{{Knot Navigation Links|prev=T(23,2) |
{{Knot Navigation Links|prev=T(23,2)|next=T(25,2)|imageext=jpg}} |
||
{| align=left |
|||
⚫ | Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-3,-6,-9,13,14,15,16,-20,-23,-2,-5,9,10,11,12,-16,-19,-22,-1,5,6,7,8,-12,-15,-18,-21,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-4,-7,-10,-13,17,18,19,20,-24/goTop.html T(6,5)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
||
|- valign=top |
|||
|[[Image:T(6,5).jpg]] |
|||
⚫ | |Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-3,-6,-9,13,14,15,16,-20,-23,-2,-5,9,10,11,12,-16,-19,-22,-1,5,6,7,8,-12,-15,-18,-21,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-4,-7,-10,-13,17,18,19,20,-24/goTop.html T(6,5)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/6.5.html T(6,5)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/6.5.html T(6,5)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
||
{{:T(6,5) Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:T(6,5) Further Notes and Views}} |
|||
===Knot presentations=== |
===Knot presentations=== |
||
Line 23: | Line 33: | ||
|style="padding-left: 1em;" | 30 12 -34 -16 38 20 -42 -24 46 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 4 -26 -8 |
|style="padding-left: 1em;" | 30 12 -34 -16 38 20 -42 -24 46 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 4 -26 -8 |
||
|} |
|} |
||
===Polynomial invariants=== |
|||
{{Polynomial Invariants|name=T(6,5)}} |
{{Polynomial Invariants|name=T(6,5)}} |
||
Line 32: | Line 40: | ||
|- |
|- |
||
|'''V<sub>2</sub> and V<sub>3</sub>''' |
|'''V<sub>2</sub> and V<sub>3</sub>''' |
||
|style="padding-left: 1em;" | {0, 175} |
|style="padding-left: 1em;" | {0, 175} |
||
|} |
|} |
||
===[[Khovanov Homology]]=== |
|||
⚫ | |||
⚫ | The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>16 is the signature of T(6,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
||
<center><table border=1> |
<center><table border=1> |
||
Line 68: | Line 78: | ||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr> |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[6, 5]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[6, 5]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>24</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[6, 5]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[6, 5]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[19, 29, 20, 28], X[10, 30, 11, 29], X[1, 31, 2, 30], |
||
X[40, 32, 41, 31], X[11, 21, 12, 20], X[2, 22, 3, 21], |
X[40, 32, 41, 31], X[11, 21, 12, 20], X[2, 22, 3, 21], |
||
Line 86: | Line 96: | ||
X[9, 39, 10, 38], X[48, 40, 1, 39]]</nowiki></pre></td></tr> |
X[9, 39, 10, 38], X[48, 40, 1, 39]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[6, 5]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[6, 5]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-3, -6, -9, 13, 14, 15, 16, -20, -23, -2, -5, 9, 10, 11, 12, |
||
-16, -19, -22, -1, 5, 6, 7, 8, -12, -15, -18, -21, 1, 2, 3, 4, -8, |
-16, -19, -22, -1, 5, 6, 7, 8, -12, -15, -18, -21, 1, 2, 3, 4, -8, |
||
Line 92: | Line 102: | ||
-11, -14, -17, 21, 22, 23, 24, -4, -7, -10, -13, 17, 18, 19, 20, -24]</nowiki></pre></td></tr> |
-11, -14, -17, 21, 22, 23, 24, -4, -7, -10, -13, 17, 18, 19, 20, -24]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[6, 5]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[6, 5]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, |
||
2, 3, 4}]</nowiki></pre></td></tr> |
2, 3, 4}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[6, 5]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[6, 5]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -9 -5 -3 3 5 9 10 |
||
1 + t - t + t - t - t + t - t + t</nowiki></pre></td></tr> |
1 + t - t + t - t - t + t - t + t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[6, 5]][z]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[6, 5]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 |
||
1 + 35 z + 329 z + 1288 z + 2518 z + 2718 z + 1729 z + |
1 + 35 z + 329 z + 1288 z + 2518 z + 2718 z + 1729 z + |
||
Line 105: | Line 115: | ||
665 z + 152 z + 19 z + z</nowiki></pre></td></tr> |
665 z + 152 z + 19 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[6, 5]], KnotSignature[TorusKnot[6, 5]]}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[6, 5]], KnotSignature[TorusKnot[6, 5]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 16}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[6, 5]][q]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[6, 5]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 12 14 17 19 |
||
q + q + q - q - q</nowiki></pre></td></tr> |
q + q + q - q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[6, 5]][q]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[6, 5]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[6, 5]][a, z]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[6, 5]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[6, 5]], Vassiliev[3][TorusKnot[6, 5]]}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[6, 5]], Vassiliev[3][TorusKnot[6, 5]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 175}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[6, 5]][q, t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[6, 5]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 19 21 23 2 27 3 25 4 27 4 29 5 31 5 |
||
q + q + q t + q t + q t + q t + q t + q t + |
q + q + q t + q t + q t + q t + q t + q t + |
||
Revision as of 21:46, 26 August 2005
[[Image:T(23,2).{{{ext}}}|80px|link=T(23,2)]] |
[[Image:T(25,2).{{{ext}}}|80px|link=T(25,2)]] |
Visit T(6,5)'s page at Knotilus!
Visit T(6,5)'s page at the original Knot Atlas! |
T(6,5) Further Notes and Views
Knot presentations
Planar diagram presentation | X19,29,20,28 X10,30,11,29 X1,31,2,30 X40,32,41,31 X11,21,12,20 X2,22,3,21 X41,23,42,22 X32,24,33,23 X3,13,4,12 X42,14,43,13 X33,15,34,14 X24,16,25,15 X43,5,44,4 X34,6,35,5 X25,7,26,6 X16,8,17,7 X35,45,36,44 X26,46,27,45 X17,47,18,46 X8,48,9,47 X27,37,28,36 X18,38,19,37 X9,39,10,38 X48,40,1,39 |
Gauss code | {-3, -6, -9, 13, 14, 15, 16, -20, -23, -2, -5, 9, 10, 11, 12, -16, -19, -22, -1, 5, 6, 7, 8, -12, -15, -18, -21, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -4, -7, -10, -13, 17, 18, 19, 20, -24} |
Dowker-Thistlethwaite code | 30 12 -34 -16 38 20 -42 -24 46 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 4 -26 -8 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(6,5)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, 16 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(6,5)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3 | {0, 175} |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 16 is the signature of T(6,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | χ | |||||||||
41 | 1 | 1 | 0 | |||||||||||||||||||||
39 | 1 | -1 | ||||||||||||||||||||||
37 | 2 | 1 | -1 | |||||||||||||||||||||
35 | 2 | 1 | -1 | |||||||||||||||||||||
33 | 1 | 1 | 1 | -1 | ||||||||||||||||||||
31 | 1 | 1 | 2 | 0 | ||||||||||||||||||||
29 | 1 | 1 | 1 | 1 | ||||||||||||||||||||
27 | 1 | 1 | 1 | 1 | ||||||||||||||||||||
25 | 1 | 1 | ||||||||||||||||||||||
23 | 1 | 1 | ||||||||||||||||||||||
21 | 1 | 1 | ||||||||||||||||||||||
19 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[6, 5]] |
Out[2]= | 24 |
In[3]:= | PD[TorusKnot[6, 5]] |
Out[3]= | PD[X[19, 29, 20, 28], X[10, 30, 11, 29], X[1, 31, 2, 30],X[40, 32, 41, 31], X[11, 21, 12, 20], X[2, 22, 3, 21], X[41, 23, 42, 22], X[32, 24, 33, 23], X[3, 13, 4, 12], X[42, 14, 43, 13], X[33, 15, 34, 14], X[24, 16, 25, 15], X[43, 5, 44, 4], X[34, 6, 35, 5], X[25, 7, 26, 6], X[16, 8, 17, 7], X[35, 45, 36, 44], X[26, 46, 27, 45], X[17, 47, 18, 46], X[8, 48, 9, 47], X[27, 37, 28, 36], X[18, 38, 19, 37],X[9, 39, 10, 38], X[48, 40, 1, 39]] |
In[4]:= | GaussCode[TorusKnot[6, 5]] |
Out[4]= | GaussCode[-3, -6, -9, 13, 14, 15, 16, -20, -23, -2, -5, 9, 10, 11, 12,-16, -19, -22, -1, 5, 6, 7, 8, -12, -15, -18, -21, 1, 2, 3, 4, -8,-11, -14, -17, 21, 22, 23, 24, -4, -7, -10, -13, 17, 18, 19, 20, -24] |
In[5]:= | BR[TorusKnot[6, 5]] |
Out[5]= | BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}] |
In[6]:= | alex = Alexander[TorusKnot[6, 5]][t] |
Out[6]= | -10 -9 -5 -3 3 5 9 10 1 + t - t + t - t - t + t - t + t |
In[7]:= | Conway[TorusKnot[6, 5]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[6, 5]], KnotSignature[TorusKnot[6, 5]]} |
Out[9]= | {5, 16} |
In[10]:= | J=Jones[TorusKnot[6, 5]][q] |
Out[10]= | 10 12 14 17 19 q + q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[6, 5]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[6, 5]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[6, 5]], Vassiliev[3][TorusKnot[6, 5]]} |
Out[14]= | {0, 175} |
In[15]:= | Kh[TorusKnot[6, 5]][q, t] |
Out[15]= | 19 21 23 2 27 3 25 4 27 4 29 5 31 5 |