T(9,5): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 5: Line 5:
<span id="top"></span>
<span id="top"></span>


{{Knot Navigation Links|prev=T(35,2).jpg|next=T(3,2).jpg}}
{{Knot Navigation Links|prev=T(35,2)|next=T(3,2)|imageext=jpg}}


{| align=left
Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-19,-22,-25,29,30,31,32,-36,-3,-6,-9,13,14,15,16,-20,-23,-26,-29,33,34,35,36,-4,-7,-10,-13,17,18,19,20,-24,-27,-30,-33,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-31,-34,-1,5,6,7,8,-12,-15,-18,-21,25,26,27,28,-32,-35,-2,-5,9,10,11,12,-16/goTop.html T(9,5)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!
|- valign=top
|[[Image:T(9,5).jpg]]
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-19,-22,-25,29,30,31,32,-36,-3,-6,-9,13,14,15,16,-20,-23,-26,-29,33,34,35,36,-4,-7,-10,-13,17,18,19,20,-24,-27,-30,-33,1,2,3,4,-8,-11,-14,-17,21,22,23,24,-28,-31,-34,-1,5,6,7,8,-12,-15,-18,-21,25,26,27,28,-32,-35,-2,-5,9,10,11,12,-16/goTop.html T(9,5)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!


Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/9.5.html T(9,5)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/9.5.html T(9,5)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!

{{:T(9,5) Quick Notes}}
|}

<br style="clear:both" />

{{:T(9,5) Further Notes and Views}}


===Knot presentations===
===Knot presentations===
Line 23: Line 33:
|style="padding-left: 1em;" | 30 60 -34 -64 38 68 -42 -72 46 4 -50 -8 54 12 -58 -16 62 20 -66 -24 70 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 52 -26 -56
|style="padding-left: 1em;" | 30 60 -34 -64 38 68 -42 -72 46 4 -50 -8 54 12 -58 -16 62 20 -66 -24 70 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 52 -26 -56
|}
|}

===Polynomial invariants===


{{Polynomial Invariants|name=T(9,5)}}
{{Polynomial Invariants|name=T(9,5)}}
Line 32: Line 40:
|-
|-
|'''V<sub>2</sub> and V<sub>3</sub>'''
|'''V<sub>2</sub> and V<sub>3</sub>'''
|style="padding-left: 1em;" | {0, 600})
|style="padding-left: 1em;" | {0, 600}
|}
|}


===[[Khovanov Homology]]===
[[Khovanov Homology]]. The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>24 is the signature of T(9,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>24 is the signature of T(9,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.


<center><table border=1>
<center><table border=1>
Line 73: Line 83:
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>36</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>36</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[51, 37, 52, 36], X[66, 38, 67, 37], X[9, 39, 10, 38],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[51, 37, 52, 36], X[66, 38, 67, 37], X[9, 39, 10, 38],
X[24, 40, 25, 39], X[67, 53, 68, 52], X[10, 54, 11, 53],
X[24, 40, 25, 39], X[67, 53, 68, 52], X[10, 54, 11, 53],
Line 99: Line 109:
X[65, 23, 66, 22], X[8, 24, 9, 23]]</nowiki></pre></td></tr>
X[65, 23, 66, 22], X[8, 24, 9, 23]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-19, -22, -25, 29, 30, 31, 32, -36, -3, -6, -9, 13, 14, 15,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-19, -22, -25, 29, 30, 31, 32, -36, -3, -6, -9, 13, 14, 15,
16, -20, -23, -26, -29, 33, 34, 35, 36, -4, -7, -10, -13, 17, 18, 19,
16, -20, -23, -26, -29, 33, 34, 35, 36, -4, -7, -10, -13, 17, 18, 19,
Line 109: Line 119:
28, -32, -35, -2, -5, 9, 10, 11, 12, -16]</nowiki></pre></td></tr>
28, -32, -35, -2, -5, 9, 10, 11, 12, -16]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[9, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1,
2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}]</nowiki></pre></td></tr>
2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[9, 5]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[9, 5]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -15 -11 -10 -7 -5 -2 2 5 7 10
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -15 -11 -10 -7 -5 -2 2 5 7 10
-1 + t - t + t - t + t - t + t + t - t + t - t +
-1 + t - t + t - t + t - t + t + t - t + t - t +
Line 119: Line 129:
t - t + t</nowiki></pre></td></tr>
t - t + t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[9, 5]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[9, 5]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
1 + 80 z + 1772 z + 17094 z + 87560 z + 267421 z + 526423 z +
1 + 80 z + 1772 z + 17094 z + 87560 z + 267421 z + 526423 z +
Line 128: Line 138:
20150 z + 3627 z + 434 z + 31 z + z</nowiki></pre></td></tr>
20150 z + 3627 z + 434 z + 31 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[9, 5]], KnotSignature[TorusKnot[9, 5]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[9, 5]], KnotSignature[TorusKnot[9, 5]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 24}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 24}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[9, 5]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[9, 5]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 16 18 20 26 28
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 16 18 20 26 28
q + q + q - q - q</nowiki></pre></td></tr>
q + q + q - q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>


<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[9, 5]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[9, 5]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[9, 5]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[9, 5]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[9, 5]], Vassiliev[3][TorusKnot[9, 5]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[9, 5]], Vassiliev[3][TorusKnot[9, 5]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 600}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 600}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[9, 5]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[9, 5]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 31 33 35 2 39 3 37 4 39 4 41 5 43 5
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 31 33 35 2 39 3 37 4 39 4 41 5 43 5
q + q + q t + q t + q t + q t + q t + q t +
q + q + q t + q t + q t + q t + q t + q t +

Revision as of 21:47, 26 August 2005


[[Image:T(35,2).{{{ext}}}|80px|link=T(35,2)]]

T(35,2)

[[Image:T(37,2).{{{ext}}}|80px|link=T(37,2)]]

T(37,2)

T(9,5).jpg Visit T(9,5)'s page at Knotilus!

Visit T(9,5)'s page at the original Knot Atlas!

T(9,5) Quick Notes


T(9,5) Further Notes and Views

Knot presentations

Planar diagram presentation X51,37,52,36 X66,38,67,37 X9,39,10,38 X24,40,25,39 X67,53,68,52 X10,54,11,53 X25,55,26,54 X40,56,41,55 X11,69,12,68 X26,70,27,69 X41,71,42,70 X56,72,57,71 X27,13,28,12 X42,14,43,13 X57,15,58,14 X72,16,1,15 X43,29,44,28 X58,30,59,29 X1,31,2,30 X16,32,17,31 X59,45,60,44 X2,46,3,45 X17,47,18,46 X32,48,33,47 X3,61,4,60 X18,62,19,61 X33,63,34,62 X48,64,49,63 X19,5,20,4 X34,6,35,5 X49,7,50,6 X64,8,65,7 X35,21,36,20 X50,22,51,21 X65,23,66,22 X8,24,9,23
Gauss code {-19, -22, -25, 29, 30, 31, 32, -36, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29, 33, 34, 35, 36, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -30, -33, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -34, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26, 27, 28, -32, -35, -2, -5, 9, 10, 11, 12, -16}
Dowker-Thistlethwaite code 30 60 -34 -64 38 68 -42 -72 46 4 -50 -8 54 12 -58 -16 62 20 -66 -24 70 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 52 -26 -56

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 1, 24 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Data:T(9,5)/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:T(9,5)/Kauffman Polynomial
The A2 invariant Data:T(9,5)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(9,5)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 600}

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 24 is the signature of T(9,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
0123456789101112131415161718192021χ
63                    110
61                  11  0
59                1  21 0
57                131   -1
55              13  1   -1
53            12 22     -1
51             32       -1
49           32 1       0
47         2  2         0
45       1 12           0
43     1 12             0
41     11 1             1
39   11 1               1
37    1                 1
35  1                   1
331                     1
311                     1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[9, 5]]
Out[2]=  
36
In[3]:=
PD[TorusKnot[9, 5]]
Out[3]=  
PD[X[51, 37, 52, 36], X[66, 38, 67, 37], X[9, 39, 10, 38], 
 X[24, 40, 25, 39], X[67, 53, 68, 52], X[10, 54, 11, 53], 

 X[25, 55, 26, 54], X[40, 56, 41, 55], X[11, 69, 12, 68], 

 X[26, 70, 27, 69], X[41, 71, 42, 70], X[56, 72, 57, 71], 

 X[27, 13, 28, 12], X[42, 14, 43, 13], X[57, 15, 58, 14], 

 X[72, 16, 1, 15], X[43, 29, 44, 28], X[58, 30, 59, 29], 

 X[1, 31, 2, 30], X[16, 32, 17, 31], X[59, 45, 60, 44], 

 X[2, 46, 3, 45], X[17, 47, 18, 46], X[32, 48, 33, 47], 

 X[3, 61, 4, 60], X[18, 62, 19, 61], X[33, 63, 34, 62], 

 X[48, 64, 49, 63], X[19, 5, 20, 4], X[34, 6, 35, 5], X[49, 7, 50, 6], 

 X[64, 8, 65, 7], X[35, 21, 36, 20], X[50, 22, 51, 21], 

X[65, 23, 66, 22], X[8, 24, 9, 23]]
In[4]:=
GaussCode[TorusKnot[9, 5]]
Out[4]=  
GaussCode[-19, -22, -25, 29, 30, 31, 32, -36, -3, -6, -9, 13, 14, 15, 
 16, -20, -23, -26, -29, 33, 34, 35, 36, -4, -7, -10, -13, 17, 18, 19, 

 20, -24, -27, -30, -33, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 

 24, -28, -31, -34, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26, 27, 

28, -32, -35, -2, -5, 9, 10, 11, 12, -16]
In[5]:=
BR[TorusKnot[9, 5]]
Out[5]=  
BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 
   2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}]
In[6]:=
alex = Alexander[TorusKnot[9, 5]][t]
Out[6]=  
      -16    -15    -11    -10    -7    -5    -2    2    5    7    10

-1 + t - t + t - t + t - t + t + t - t + t - t +

  11    15    16
t - t + t
In[7]:=
Conway[TorusKnot[9, 5]][z]
Out[7]=  
        2         4          6          8           10           12

1 + 80 z + 1772 z + 17094 z + 87560 z + 267421 z + 526423 z +

         14           16           18           20          22
 703851 z   + 661810 z   + 447240 z   + 219625 z   + 78431 z   + 

        24         26        28       30    32
20150 z + 3627 z + 434 z + 31 z + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[TorusKnot[9, 5]], KnotSignature[TorusKnot[9, 5]]}
Out[9]=  
{1, 24}
In[10]:=
J=Jones[TorusKnot[9, 5]][q]
Out[10]=  
 16    18    20    26    28
q   + q   + q   - q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[TorusKnot[9, 5]][q]
Out[12]=  
NotAvailable
In[13]:=
Kauffman[TorusKnot[9, 5]][a, z]
Out[13]=  
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[9, 5]], Vassiliev[3][TorusKnot[9, 5]]}
Out[14]=  
{0, 600}
In[15]:=
Kh[TorusKnot[9, 5]][q, t]
Out[15]=  
 31    33    35  2    39  3    37  4    39  4    41  5    43  5

q + q + q t + q t + q t + q t + q t + q t +

  39  6    41  6    43  7    45  7    41  8      43  8    45  9
 q   t  + q   t  + q   t  + q   t  + q   t  + 2 q   t  + q   t  + 

    47  9      45  10      49  11      47  12      49  12    53  12
 2 q   t  + 2 q   t   + 3 q   t   + 2 q   t   + 2 q   t   + q   t   + 

    51  13      53  13    49  14      51  14    55  14      53  15
 3 q   t   + 2 q   t   + q   t   + 2 q   t   + q   t   + 2 q   t   + 

    55  15      53  16    57  16    59  16      57  17    55  18
 3 q   t   + 2 q   t   + q   t   + q   t   + 3 q   t   + q   t   + 

  57  18    61  18      59  19    61  19    59  20    63  20    63  21
q t + q t + 2 q t + q t + q t + q t + q t