10 95: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 95 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-6,5,-7,4,-10,2,-3,9,-8,6,-4,3,-9,7,-5,8/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=95|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-6,5,-7,4,-10,2,-3,9,-8,6,-4,3,-9,7,-5,8/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 73: | Line 37: | ||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{23}-3 q^{22}+2 q^{21}+8 q^{20}-20 q^{19}+7 q^{18}+39 q^{17}-63 q^{16}+106 q^{14}-113 q^{13}-34 q^{12}+181 q^{11}-135 q^{10}-79 q^9+219 q^8-117 q^7-107 q^6+198 q^5-70 q^4-105 q^3+132 q^2-20 q-71+57 q^{-1} +4 q^{-2} -28 q^{-3} +12 q^{-4} +3 q^{-5} -4 q^{-6} + q^{-7} </math> | |
|||
coloured_jones_3 = <math>-q^{45}+3 q^{44}-2 q^{43}-3 q^{42}+q^{41}+13 q^{40}-8 q^{39}-29 q^{38}+14 q^{37}+69 q^{36}-21 q^{35}-134 q^{34}+247 q^{32}+47 q^{31}-373 q^{30}-165 q^{29}+516 q^{28}+340 q^{27}-634 q^{26}-567 q^{25}+703 q^{24}+822 q^{23}-716 q^{22}-1068 q^{21}+669 q^{20}+1283 q^{19}-586 q^{18}-1425 q^{17}+446 q^{16}+1528 q^{15}-315 q^{14}-1528 q^{13}+137 q^{12}+1490 q^{11}+13 q^{10}-1352 q^9-184 q^8+1181 q^7+303 q^6-942 q^5-392 q^4+700 q^3+406 q^2-452 q-375+256 q^{-1} +296 q^{-2} -117 q^{-3} -201 q^{-4} +35 q^{-5} +117 q^{-6} +2 q^{-7} -61 q^{-8} -5 q^{-9} +23 q^{-10} +4 q^{-11} -7 q^{-12} -3 q^{-13} +4 q^{-14} - q^{-15} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{23}-3 q^{22}+2 q^{21}+8 q^{20}-20 q^{19}+7 q^{18}+39 q^{17}-63 q^{16}+106 q^{14}-113 q^{13}-34 q^{12}+181 q^{11}-135 q^{10}-79 q^9+219 q^8-117 q^7-107 q^6+198 q^5-70 q^4-105 q^3+132 q^2-20 q-71+57 q^{-1} +4 q^{-2} -28 q^{-3} +12 q^{-4} +3 q^{-5} -4 q^{-6} + q^{-7} </math>|J3=<math>-q^{45}+3 q^{44}-2 q^{43}-3 q^{42}+q^{41}+13 q^{40}-8 q^{39}-29 q^{38}+14 q^{37}+69 q^{36}-21 q^{35}-134 q^{34}+247 q^{32}+47 q^{31}-373 q^{30}-165 q^{29}+516 q^{28}+340 q^{27}-634 q^{26}-567 q^{25}+703 q^{24}+822 q^{23}-716 q^{22}-1068 q^{21}+669 q^{20}+1283 q^{19}-586 q^{18}-1425 q^{17}+446 q^{16}+1528 q^{15}-315 q^{14}-1528 q^{13}+137 q^{12}+1490 q^{11}+13 q^{10}-1352 q^9-184 q^8+1181 q^7+303 q^6-942 q^5-392 q^4+700 q^3+406 q^2-452 q-375+256 q^{-1} +296 q^{-2} -117 q^{-3} -201 q^{-4} +35 q^{-5} +117 q^{-6} +2 q^{-7} -61 q^{-8} -5 q^{-9} +23 q^{-10} +4 q^{-11} -7 q^{-12} -3 q^{-13} +4 q^{-14} - q^{-15} </math>|J4=<math>q^{74}-3 q^{73}+2 q^{72}+3 q^{71}-6 q^{70}+6 q^{69}-12 q^{68}+14 q^{67}+18 q^{66}-40 q^{65}+4 q^{64}-40 q^{63}+85 q^{62}+117 q^{61}-140 q^{60}-118 q^{59}-220 q^{58}+296 q^{57}+585 q^{56}-123 q^{55}-508 q^{54}-1064 q^{53}+341 q^{52}+1747 q^{51}+753 q^{50}-730 q^{49}-3057 q^{48}-792 q^{47}+3054 q^{46}+3097 q^{45}+470 q^{44}-5528 q^{43}-3778 q^{42}+3048 q^{41}+6139 q^{40}+3738 q^{39}-6871 q^{38}-7673 q^{37}+1022 q^{36}+8230 q^{35}+7998 q^{34}-6313 q^{33}-10733 q^{32}-2104 q^{31}+8565 q^{30}+11535 q^{29}-4456 q^{28}-12064 q^{27}-5030 q^{26}+7490 q^{25}+13506 q^{24}-2121 q^{23}-11750 q^{22}-7196 q^{21}+5450 q^{20}+13826 q^{19}+421 q^{18}-9920 q^{17}-8474 q^{16}+2564 q^{15}+12405 q^{14}+2870 q^{13}-6640 q^{12}-8392 q^{11}-639 q^{10}+9161 q^9+4292 q^8-2672 q^7-6508 q^6-2838 q^5+4956 q^4+3854 q^3+341 q^2-3510 q-3024+1564 q^{-1} +2116 q^{-2} +1316 q^{-3} -1059 q^{-4} -1804 q^{-5} +59 q^{-6} +591 q^{-7} +873 q^{-8} -31 q^{-9} -637 q^{-10} -136 q^{-11} +6 q^{-12} +293 q^{-13} +85 q^{-14} -136 q^{-15} -31 q^{-16} -41 q^{-17} +54 q^{-18} +25 q^{-19} -22 q^{-20} + q^{-21} -9 q^{-22} +7 q^{-23} +3 q^{-24} -4 q^{-25} + q^{-26} </math>|J5=<math>-q^{110}+3 q^{109}-2 q^{108}-3 q^{107}+6 q^{106}-q^{105}-7 q^{104}+6 q^{103}-3 q^{102}-8 q^{101}+27 q^{100}+15 q^{99}-36 q^{98}-33 q^{97}-35 q^{96}+10 q^{95}+143 q^{94}+163 q^{93}-42 q^{92}-304 q^{91}-413 q^{90}-137 q^{89}+564 q^{88}+1046 q^{87}+609 q^{86}-748 q^{85}-2082 q^{84}-1870 q^{83}+512 q^{82}+3506 q^{81}+4216 q^{80}+917 q^{79}-4843 q^{78}-8013 q^{77}-4205 q^{76}+5160 q^{75}+12706 q^{74}+10303 q^{73}-3107 q^{72}-17644 q^{71}-19075 q^{70}-2456 q^{69}+20846 q^{68}+29986 q^{67}+12476 q^{66}-20922 q^{65}-41368 q^{64}-26486 q^{63}+16293 q^{62}+51184 q^{61}+43414 q^{60}-6648 q^{59}-57668 q^{58}-61166 q^{57}-7311 q^{56}+59653 q^{55}+77568 q^{54}+24096 q^{53}-57034 q^{52}-91035 q^{51}-41593 q^{50}+50558 q^{49}+100573 q^{48}+58118 q^{47}-41592 q^{46}-106151 q^{45}-72282 q^{44}+31335 q^{43}+108228 q^{42}+83882 q^{41}-21123 q^{40}-107606 q^{39}-92468 q^{38}+10949 q^{37}+104784 q^{36}+99127 q^{35}-1357 q^{34}-100296 q^{33}-103365 q^{32}-8536 q^{31}+93644 q^{30}+106299 q^{29}+18484 q^{28}-84914 q^{27}-106690 q^{26}-29009 q^{25}+73258 q^{24}+104837 q^{23}+39228 q^{22}-59043 q^{21}-99208 q^{20}-48503 q^{19}+42392 q^{18}+89989 q^{17}+55132 q^{16}-24834 q^{15}-76576 q^{14}-58163 q^{13}+7918 q^{12}+60438 q^{11}+56432 q^{10}+6160 q^9-42717 q^8-50283 q^7-16066 q^6+26013 q^5+40652 q^4+20776 q^3-11936 q^2-29433 q-20924+1998 q^{-1} +18681 q^{-2} +17664 q^{-3} +3612 q^{-4} -9922 q^{-5} -12822 q^{-6} -5589 q^{-7} +3888 q^{-8} +8061 q^{-9} +5212 q^{-10} -608 q^{-11} -4271 q^{-12} -3747 q^{-13} -768 q^{-14} +1832 q^{-15} +2299 q^{-16} +929 q^{-17} -601 q^{-18} -1134 q^{-19} -668 q^{-20} +57 q^{-21} +489 q^{-22} +395 q^{-23} +37 q^{-24} -181 q^{-25} -159 q^{-26} -40 q^{-27} +34 q^{-28} +75 q^{-29} +31 q^{-30} -31 q^{-31} -18 q^{-32} +2 q^{-33} -2 q^{-34} +4 q^{-35} +9 q^{-36} -7 q^{-37} -3 q^{-38} +4 q^{-39} - q^{-40} </math>|J6=<math>q^{153}-3 q^{152}+2 q^{151}+3 q^{150}-6 q^{149}+q^{148}+2 q^{147}+13 q^{146}-17 q^{145}-7 q^{144}+21 q^{143}-30 q^{142}+q^{141}+26 q^{140}+75 q^{139}-39 q^{138}-79 q^{137}+8 q^{136}-145 q^{135}-22 q^{134}+176 q^{133}+443 q^{132}+119 q^{131}-246 q^{130}-330 q^{129}-974 q^{128}-604 q^{127}+437 q^{126}+2048 q^{125}+1952 q^{124}+721 q^{123}-921 q^{122}-4471 q^{121}-5093 q^{120}-2180 q^{119}+4727 q^{118}+9229 q^{117}+9556 q^{116}+4481 q^{115}-9565 q^{114}-20080 q^{113}-20277 q^{112}-3339 q^{111}+18604 q^{110}+36503 q^{109}+37034 q^{108}+4935 q^{107}-37805 q^{106}-68232 q^{105}-54595 q^{104}-4579 q^{103}+66186 q^{102}+114244 q^{101}+85257 q^{100}-6338 q^{99}-119162 q^{98}-167599 q^{97}-120746 q^{96}+26742 q^{95}+193589 q^{94}+247689 q^{93}+146781 q^{92}-80527 q^{91}-281319 q^{90}-338990 q^{89}-161767 q^{88}+163851 q^{87}+411083 q^{86}+418167 q^{85}+129028 q^{84}-270830 q^{83}-557893 q^{82}-478976 q^{81}-50818 q^{80}+442241 q^{79}+688154 q^{78}+470233 q^{77}-71701 q^{76}-641626 q^{75}-791032 q^{74}-392694 q^{73}+290137 q^{72}+823715 q^{71}+801510 q^{70}+243889 q^{69}-552123 q^{68}-972467 q^{67}-719978 q^{66}+33503 q^{65}+798173 q^{64}+1009815 q^{63}+542427 q^{62}-367069 q^{61}-1006059 q^{60}-936295 q^{59}-211047 q^{58}+682942 q^{57}+1086903 q^{56}+748016 q^{55}-181552 q^{54}-954361 q^{53}-1042736 q^{52}-390720 q^{51}+551136 q^{50}+1087006 q^{49}+871806 q^{48}-26273 q^{47}-870403 q^{46}-1086917 q^{45}-526984 q^{44}+414389 q^{43}+1046366 q^{42}+956458 q^{41}+128777 q^{40}-749709 q^{39}-1090647 q^{38}-657877 q^{37}+236093 q^{36}+946196 q^{35}+1010043 q^{34}+315581 q^{33}-550237 q^{32}-1020617 q^{31}-775839 q^{30}-7921 q^{29}+738632 q^{28}+982646 q^{27}+507688 q^{26}-256910 q^{25}-821648 q^{24}-810590 q^{23}-269684 q^{22}+417483 q^{21}+809982 q^{20}+611935 q^{19}+60074 q^{18}-495888 q^{17}-687484 q^{16}-433994 q^{15}+73152 q^{14}+502265 q^{13}+545481 q^{12}+268108 q^{11}-150757 q^{10}-425011 q^9-415900 q^8-152038 q^7+180052 q^6+337353 q^5+287984 q^4+69876 q^3-151988 q^2-258020 q-192118-18973 q^{-1} +120351 q^{-2} +176693 q^{-3} +117936 q^{-4} +7180 q^{-5} -92700 q^{-6} -116340 q^{-7} -66011 q^{-8} +1410 q^{-9} +59930 q^{-10} +69773 q^{-11} +41846 q^{-12} -7378 q^{-13} -37682 q^{-14} -37935 q^{-15} -22488 q^{-16} +4571 q^{-17} +20705 q^{-18} +23192 q^{-19} +9420 q^{-20} -3587 q^{-21} -9968 q^{-22} -11502 q^{-23} -4917 q^{-24} +1677 q^{-25} +6364 q^{-26} +4433 q^{-27} +1774 q^{-28} -515 q^{-29} -2746 q^{-30} -2155 q^{-31} -841 q^{-32} +954 q^{-33} +804 q^{-34} +660 q^{-35} +403 q^{-36} -322 q^{-37} -420 q^{-38} -306 q^{-39} +130 q^{-40} +34 q^{-41} +77 q^{-42} +123 q^{-43} -22 q^{-44} -49 q^{-45} -59 q^{-46} +41 q^{-47} -5 q^{-48} -9 q^{-49} +22 q^{-50} -3 q^{-51} -4 q^{-52} -9 q^{-53} +7 q^{-54} +3 q^{-55} -4 q^{-56} + q^{-57} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{74}-3 q^{73}+2 q^{72}+3 q^{71}-6 q^{70}+6 q^{69}-12 q^{68}+14 q^{67}+18 q^{66}-40 q^{65}+4 q^{64}-40 q^{63}+85 q^{62}+117 q^{61}-140 q^{60}-118 q^{59}-220 q^{58}+296 q^{57}+585 q^{56}-123 q^{55}-508 q^{54}-1064 q^{53}+341 q^{52}+1747 q^{51}+753 q^{50}-730 q^{49}-3057 q^{48}-792 q^{47}+3054 q^{46}+3097 q^{45}+470 q^{44}-5528 q^{43}-3778 q^{42}+3048 q^{41}+6139 q^{40}+3738 q^{39}-6871 q^{38}-7673 q^{37}+1022 q^{36}+8230 q^{35}+7998 q^{34}-6313 q^{33}-10733 q^{32}-2104 q^{31}+8565 q^{30}+11535 q^{29}-4456 q^{28}-12064 q^{27}-5030 q^{26}+7490 q^{25}+13506 q^{24}-2121 q^{23}-11750 q^{22}-7196 q^{21}+5450 q^{20}+13826 q^{19}+421 q^{18}-9920 q^{17}-8474 q^{16}+2564 q^{15}+12405 q^{14}+2870 q^{13}-6640 q^{12}-8392 q^{11}-639 q^{10}+9161 q^9+4292 q^8-2672 q^7-6508 q^6-2838 q^5+4956 q^4+3854 q^3+341 q^2-3510 q-3024+1564 q^{-1} +2116 q^{-2} +1316 q^{-3} -1059 q^{-4} -1804 q^{-5} +59 q^{-6} +591 q^{-7} +873 q^{-8} -31 q^{-9} -637 q^{-10} -136 q^{-11} +6 q^{-12} +293 q^{-13} +85 q^{-14} -136 q^{-15} -31 q^{-16} -41 q^{-17} +54 q^{-18} +25 q^{-19} -22 q^{-20} + q^{-21} -9 q^{-22} +7 q^{-23} +3 q^{-24} -4 q^{-25} + q^{-26} </math> | |
|||
coloured_jones_5 = <math>-q^{110}+3 q^{109}-2 q^{108}-3 q^{107}+6 q^{106}-q^{105}-7 q^{104}+6 q^{103}-3 q^{102}-8 q^{101}+27 q^{100}+15 q^{99}-36 q^{98}-33 q^{97}-35 q^{96}+10 q^{95}+143 q^{94}+163 q^{93}-42 q^{92}-304 q^{91}-413 q^{90}-137 q^{89}+564 q^{88}+1046 q^{87}+609 q^{86}-748 q^{85}-2082 q^{84}-1870 q^{83}+512 q^{82}+3506 q^{81}+4216 q^{80}+917 q^{79}-4843 q^{78}-8013 q^{77}-4205 q^{76}+5160 q^{75}+12706 q^{74}+10303 q^{73}-3107 q^{72}-17644 q^{71}-19075 q^{70}-2456 q^{69}+20846 q^{68}+29986 q^{67}+12476 q^{66}-20922 q^{65}-41368 q^{64}-26486 q^{63}+16293 q^{62}+51184 q^{61}+43414 q^{60}-6648 q^{59}-57668 q^{58}-61166 q^{57}-7311 q^{56}+59653 q^{55}+77568 q^{54}+24096 q^{53}-57034 q^{52}-91035 q^{51}-41593 q^{50}+50558 q^{49}+100573 q^{48}+58118 q^{47}-41592 q^{46}-106151 q^{45}-72282 q^{44}+31335 q^{43}+108228 q^{42}+83882 q^{41}-21123 q^{40}-107606 q^{39}-92468 q^{38}+10949 q^{37}+104784 q^{36}+99127 q^{35}-1357 q^{34}-100296 q^{33}-103365 q^{32}-8536 q^{31}+93644 q^{30}+106299 q^{29}+18484 q^{28}-84914 q^{27}-106690 q^{26}-29009 q^{25}+73258 q^{24}+104837 q^{23}+39228 q^{22}-59043 q^{21}-99208 q^{20}-48503 q^{19}+42392 q^{18}+89989 q^{17}+55132 q^{16}-24834 q^{15}-76576 q^{14}-58163 q^{13}+7918 q^{12}+60438 q^{11}+56432 q^{10}+6160 q^9-42717 q^8-50283 q^7-16066 q^6+26013 q^5+40652 q^4+20776 q^3-11936 q^2-29433 q-20924+1998 q^{-1} +18681 q^{-2} +17664 q^{-3} +3612 q^{-4} -9922 q^{-5} -12822 q^{-6} -5589 q^{-7} +3888 q^{-8} +8061 q^{-9} +5212 q^{-10} -608 q^{-11} -4271 q^{-12} -3747 q^{-13} -768 q^{-14} +1832 q^{-15} +2299 q^{-16} +929 q^{-17} -601 q^{-18} -1134 q^{-19} -668 q^{-20} +57 q^{-21} +489 q^{-22} +395 q^{-23} +37 q^{-24} -181 q^{-25} -159 q^{-26} -40 q^{-27} +34 q^{-28} +75 q^{-29} +31 q^{-30} -31 q^{-31} -18 q^{-32} +2 q^{-33} -2 q^{-34} +4 q^{-35} +9 q^{-36} -7 q^{-37} -3 q^{-38} +4 q^{-39} - q^{-40} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{153}-3 q^{152}+2 q^{151}+3 q^{150}-6 q^{149}+q^{148}+2 q^{147}+13 q^{146}-17 q^{145}-7 q^{144}+21 q^{143}-30 q^{142}+q^{141}+26 q^{140}+75 q^{139}-39 q^{138}-79 q^{137}+8 q^{136}-145 q^{135}-22 q^{134}+176 q^{133}+443 q^{132}+119 q^{131}-246 q^{130}-330 q^{129}-974 q^{128}-604 q^{127}+437 q^{126}+2048 q^{125}+1952 q^{124}+721 q^{123}-921 q^{122}-4471 q^{121}-5093 q^{120}-2180 q^{119}+4727 q^{118}+9229 q^{117}+9556 q^{116}+4481 q^{115}-9565 q^{114}-20080 q^{113}-20277 q^{112}-3339 q^{111}+18604 q^{110}+36503 q^{109}+37034 q^{108}+4935 q^{107}-37805 q^{106}-68232 q^{105}-54595 q^{104}-4579 q^{103}+66186 q^{102}+114244 q^{101}+85257 q^{100}-6338 q^{99}-119162 q^{98}-167599 q^{97}-120746 q^{96}+26742 q^{95}+193589 q^{94}+247689 q^{93}+146781 q^{92}-80527 q^{91}-281319 q^{90}-338990 q^{89}-161767 q^{88}+163851 q^{87}+411083 q^{86}+418167 q^{85}+129028 q^{84}-270830 q^{83}-557893 q^{82}-478976 q^{81}-50818 q^{80}+442241 q^{79}+688154 q^{78}+470233 q^{77}-71701 q^{76}-641626 q^{75}-791032 q^{74}-392694 q^{73}+290137 q^{72}+823715 q^{71}+801510 q^{70}+243889 q^{69}-552123 q^{68}-972467 q^{67}-719978 q^{66}+33503 q^{65}+798173 q^{64}+1009815 q^{63}+542427 q^{62}-367069 q^{61}-1006059 q^{60}-936295 q^{59}-211047 q^{58}+682942 q^{57}+1086903 q^{56}+748016 q^{55}-181552 q^{54}-954361 q^{53}-1042736 q^{52}-390720 q^{51}+551136 q^{50}+1087006 q^{49}+871806 q^{48}-26273 q^{47}-870403 q^{46}-1086917 q^{45}-526984 q^{44}+414389 q^{43}+1046366 q^{42}+956458 q^{41}+128777 q^{40}-749709 q^{39}-1090647 q^{38}-657877 q^{37}+236093 q^{36}+946196 q^{35}+1010043 q^{34}+315581 q^{33}-550237 q^{32}-1020617 q^{31}-775839 q^{30}-7921 q^{29}+738632 q^{28}+982646 q^{27}+507688 q^{26}-256910 q^{25}-821648 q^{24}-810590 q^{23}-269684 q^{22}+417483 q^{21}+809982 q^{20}+611935 q^{19}+60074 q^{18}-495888 q^{17}-687484 q^{16}-433994 q^{15}+73152 q^{14}+502265 q^{13}+545481 q^{12}+268108 q^{11}-150757 q^{10}-425011 q^9-415900 q^8-152038 q^7+180052 q^6+337353 q^5+287984 q^4+69876 q^3-151988 q^2-258020 q-192118-18973 q^{-1} +120351 q^{-2} +176693 q^{-3} +117936 q^{-4} +7180 q^{-5} -92700 q^{-6} -116340 q^{-7} -66011 q^{-8} +1410 q^{-9} +59930 q^{-10} +69773 q^{-11} +41846 q^{-12} -7378 q^{-13} -37682 q^{-14} -37935 q^{-15} -22488 q^{-16} +4571 q^{-17} +20705 q^{-18} +23192 q^{-19} +9420 q^{-20} -3587 q^{-21} -9968 q^{-22} -11502 q^{-23} -4917 q^{-24} +1677 q^{-25} +6364 q^{-26} +4433 q^{-27} +1774 q^{-28} -515 q^{-29} -2746 q^{-30} -2155 q^{-31} -841 q^{-32} +954 q^{-33} +804 q^{-34} +660 q^{-35} +403 q^{-36} -322 q^{-37} -420 q^{-38} -306 q^{-39} +130 q^{-40} +34 q^{-41} +77 q^{-42} +123 q^{-43} -22 q^{-44} -49 q^{-45} -59 q^{-46} +41 q^{-47} -5 q^{-48} -9 q^{-49} +22 q^{-50} -3 q^{-51} -4 q^{-52} -9 q^{-53} +7 q^{-54} +3 q^{-55} -4 q^{-56} + q^{-57} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 95]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 95]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 17, 12, 16], X[15, 9, 16, 8], |
|||
X[19, 7, 20, 6], X[5, 15, 6, 14], X[7, 19, 8, 18], X[13, 1, 14, 20], |
X[19, 7, 20, 6], X[5, 15, 6, 14], X[7, 19, 8, 18], X[13, 1, 14, 20], |
||
X[17, 13, 18, 12], X[9, 2, 10, 3]]</nowiki></pre></td></tr> |
X[17, 13, 18, 12], X[9, 2, 10, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 95]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -6, 5, -7, 4, -10, 2, -3, 9, -8, 6, -4, 3, -9, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -6, 5, -7, 4, -10, 2, -3, 9, -8, 6, -4, 3, -9, |
|||
7, -5, 8]</nowiki></pre></td></tr> |
7, -5, 8]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 95]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 14, 18, 2, 16, 20, 8, 12, 6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 95]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, 2, -3, 2, -1, 2, 3, 3, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 95]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 95]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_95_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 95]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 95]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 9 21 2 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 95]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_95_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 95]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 95]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 9 21 2 3 |
|||
-27 + -- - -- + -- + 21 t - 9 t + 2 t |
-27 + -- - -- + -- + 21 t - 9 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 95]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 3 z + 3 z + 2 z</nowiki></pre></td></tr> |
1 + 3 z + 3 z + 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 95]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 95]], KnotSignature[Knot[10, 95]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{91, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 95]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 2 3 4 5 6 7 8 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 95]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 2 3 4 5 6 7 8 |
|||
-8 - q + - + 12 q - 14 q + 16 q - 14 q + 11 q - 7 q + 3 q - q |
-8 - q + - + 12 q - 14 q + 16 q - 14 q + 11 q - 7 q + 3 q - q |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 95]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 95]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 -2 2 4 6 10 12 14 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 95]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 -2 2 4 6 10 12 14 |
|||
-1 - q + -- - q + 3 q - 3 q + 3 q + q + 3 q - 2 q + |
-1 - q + -- - q + 3 q - 3 q + 3 q + q + 3 q - 2 q + |
||
4 |
4 |
||
Line 147: | Line 98: | ||
16 18 20 22 24 |
16 18 20 22 24 |
||
3 q - 2 q - 2 q + q - q</nowiki></pre></td></tr> |
3 q - 2 q - 2 q + q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 95]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 4 6 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 4 6 6 |
|||
-2 3 2 2 z 5 z z 4 z 3 z 2 z z z |
-2 3 2 2 z 5 z z 4 z 3 z 2 z z z |
||
-- + -- - z - ---- + ---- + -- - z - -- + ---- + ---- + -- + -- |
-- + -- - z - ---- + ---- + -- - z - -- + ---- + ---- + -- + -- |
||
6 4 6 4 2 6 4 2 4 2 |
6 4 6 4 2 6 4 2 4 2 |
||
a a a a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 95]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
|||
2 3 z 2 z 5 z 3 z z 2 2 z 4 z 7 z z |
2 3 z 2 z 5 z 3 z z 2 2 z 4 z 7 z z |
||
-- + -- + -- - --- - --- - --- - - + 2 z + ---- - ---- - ---- + -- - |
-- + -- + -- - --- - --- - --- - - + 2 z + ---- - ---- - ---- + -- - |
||
Line 185: | Line 134: | ||
4 2 5 3 |
4 2 5 3 |
||
a a a a</nowiki></pre></td></tr> |
a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 95]], Vassiliev[3][Knot[10, 95]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 5}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 95]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 3 1 5 3 q 3 5 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 95]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 3 1 5 3 q 3 5 |
|||
7 q + 6 q + ----- + ----- + ---- + --- + --- + 8 q t + 6 q t + |
7 q + 6 q + ----- + ----- + ---- + --- + --- + 8 q t + 6 q t + |
||
5 3 3 2 2 q t t |
5 3 3 2 2 q t t |
||
Line 200: | Line 147: | ||
11 5 13 5 13 6 15 6 17 7 |
11 5 13 5 13 6 15 6 17 7 |
||
2 q t + 5 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
2 q t + 5 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 95], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 4 3 12 28 4 57 2 3 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 4 3 12 28 4 57 2 3 |
|||
-71 + q - -- + -- + -- - -- + -- + -- - 20 q + 132 q - 105 q - |
-71 + q - -- + -- + -- - -- + -- + -- - 20 q + 132 q - 105 q - |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
Line 215: | Line 161: | ||
19 20 21 22 23 |
19 20 21 22 23 |
||
20 q + 8 q + 2 q - 3 q + q</nowiki></pre></td></tr> |
20 q + 8 q + 2 q - 3 q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:32, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 95's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X11,17,12,16 X15,9,16,8 X19,7,20,6 X5,15,6,14 X7,19,8,18 X13,1,14,20 X17,13,18,12 X9,2,10,3 |
Gauss code | -1, 10, -2, 1, -6, 5, -7, 4, -10, 2, -3, 9, -8, 6, -4, 3, -9, 7, -5, 8 |
Dowker-Thistlethwaite code | 4 10 14 18 2 16 20 8 12 6 |
Conway Notation | [.210.2.2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{11, 4}, {3, 9}, {8, 10}, {9, 11}, {10, 13}, {5, 12}, {4, 6}, {2, 5}, {7, 3}, {6, 8}, {1, 7}, {13, 2}, {12, 1}] |
[edit Notes on presentations of 10 95]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 95"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X11,17,12,16 X15,9,16,8 X19,7,20,6 X5,15,6,14 X7,19,8,18 X13,1,14,20 X17,13,18,12 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -6, 5, -7, 4, -10, 2, -3, 9, -8, 6, -4, 3, -9, 7, -5, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 18 2 16 20 8 12 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.210.2.2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 4}, {3, 9}, {8, 10}, {9, 11}, {10, 13}, {5, 12}, {4, 6}, {2, 5}, {7, 3}, {6, 8}, {1, 7}, {13, 2}, {12, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 95"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 91, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 95"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (3, 5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 95. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|