10 13: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 13 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,10,-8,9,-2,3,-4,2,-6,7,-9,8,-10,5,-7,6/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=13|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,10,-8,9,-2,3,-4,2,-6,7,-9,8,-10,5,-7,6/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 28: | Line 13: | ||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 6 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 6. |
|||
braid_index = 6 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 6. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 75: | Line 39: | ||
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{12}-2 q^{11}+q^{10}+5 q^9-10 q^8+3 q^7+16 q^6-27 q^5+6 q^4+34 q^3-47 q^2+6 q+52-58 q^{-1} +60 q^{-3} -53 q^{-4} -9 q^{-5} +54 q^{-6} -36 q^{-7} -15 q^{-8} +38 q^{-9} -17 q^{-10} -14 q^{-11} +20 q^{-12} -4 q^{-13} -8 q^{-14} +6 q^{-15} -2 q^{-17} + q^{-18} </math> | |
|||
coloured_jones_3 = <math>q^{24}-2 q^{23}+q^{22}+q^{21}+2 q^{20}-7 q^{19}+q^{18}+8 q^{17}+2 q^{16}-18 q^{15}+4 q^{14}+21 q^{13}-43 q^{11}+13 q^{10}+56 q^9-12 q^8-87 q^7+19 q^6+116 q^5-16 q^4-148 q^3+8 q^2+178 q+2-193 q^{-1} -23 q^{-2} +204 q^{-3} +38 q^{-4} -197 q^{-5} -61 q^{-6} +188 q^{-7} +75 q^{-8} -165 q^{-9} -91 q^{-10} +139 q^{-11} +104 q^{-12} -112 q^{-13} -108 q^{-14} +79 q^{-15} +110 q^{-16} -50 q^{-17} -100 q^{-18} +21 q^{-19} +87 q^{-20} -2 q^{-21} -65 q^{-22} -14 q^{-23} +47 q^{-24} +15 q^{-25} -25 q^{-26} -17 q^{-27} +15 q^{-28} +10 q^{-29} -5 q^{-30} -7 q^{-31} +3 q^{-32} +2 q^{-33} -2 q^{-35} + q^{-36} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{12}-2 q^{11}+q^{10}+5 q^9-10 q^8+3 q^7+16 q^6-27 q^5+6 q^4+34 q^3-47 q^2+6 q+52-58 q^{-1} +60 q^{-3} -53 q^{-4} -9 q^{-5} +54 q^{-6} -36 q^{-7} -15 q^{-8} +38 q^{-9} -17 q^{-10} -14 q^{-11} +20 q^{-12} -4 q^{-13} -8 q^{-14} +6 q^{-15} -2 q^{-17} + q^{-18} </math>|J3=<math>q^{24}-2 q^{23}+q^{22}+q^{21}+2 q^{20}-7 q^{19}+q^{18}+8 q^{17}+2 q^{16}-18 q^{15}+4 q^{14}+21 q^{13}-43 q^{11}+13 q^{10}+56 q^9-12 q^8-87 q^7+19 q^6+116 q^5-16 q^4-148 q^3+8 q^2+178 q+2-193 q^{-1} -23 q^{-2} +204 q^{-3} +38 q^{-4} -197 q^{-5} -61 q^{-6} +188 q^{-7} +75 q^{-8} -165 q^{-9} -91 q^{-10} +139 q^{-11} +104 q^{-12} -112 q^{-13} -108 q^{-14} +79 q^{-15} +110 q^{-16} -50 q^{-17} -100 q^{-18} +21 q^{-19} +87 q^{-20} -2 q^{-21} -65 q^{-22} -14 q^{-23} +47 q^{-24} +15 q^{-25} -25 q^{-26} -17 q^{-27} +15 q^{-28} +10 q^{-29} -5 q^{-30} -7 q^{-31} +3 q^{-32} +2 q^{-33} -2 q^{-35} + q^{-36} </math>|J4=<math>q^{40}-2 q^{39}+q^{38}+q^{37}-2 q^{36}+5 q^{35}-9 q^{34}+3 q^{33}+6 q^{32}-7 q^{31}+16 q^{30}-25 q^{29}+7 q^{28}+13 q^{27}-23 q^{26}+40 q^{25}-42 q^{24}+25 q^{23}+17 q^{22}-73 q^{21}+61 q^{20}-56 q^{19}+96 q^{18}+50 q^{17}-179 q^{16}+21 q^{15}-92 q^{14}+251 q^{13}+170 q^{12}-303 q^{11}-114 q^{10}-214 q^9+435 q^8+399 q^7-351 q^6-286 q^5-434 q^4+541 q^3+644 q^2-283 q-374-665 q^{-1} +517 q^{-2} +782 q^{-3} -156 q^{-4} -334 q^{-5} -803 q^{-6} +401 q^{-7} +773 q^{-8} -29 q^{-9} -206 q^{-10} -834 q^{-11} +240 q^{-12} +664 q^{-13} +87 q^{-14} -42 q^{-15} -781 q^{-16} +53 q^{-17} +484 q^{-18} +189 q^{-19} +145 q^{-20} -653 q^{-21} -127 q^{-22} +253 q^{-23} +228 q^{-24} +310 q^{-25} -440 q^{-26} -222 q^{-27} +18 q^{-28} +160 q^{-29} +377 q^{-30} -196 q^{-31} -187 q^{-32} -125 q^{-33} +30 q^{-34} +306 q^{-35} -22 q^{-36} -74 q^{-37} -134 q^{-38} -59 q^{-39} +165 q^{-40} +30 q^{-41} +9 q^{-42} -68 q^{-43} -64 q^{-44} +57 q^{-45} +15 q^{-46} +24 q^{-47} -17 q^{-48} -31 q^{-49} +15 q^{-50} +10 q^{-52} - q^{-53} -9 q^{-54} +4 q^{-55} - q^{-56} +2 q^{-57} -2 q^{-59} + q^{-60} </math>|J5=<math>q^{60}-2 q^{59}+q^{58}+q^{57}-2 q^{56}+q^{55}+3 q^{54}-7 q^{53}+q^{52}+7 q^{51}-4 q^{50}+2 q^{49}+7 q^{48}-18 q^{47}-4 q^{46}+11 q^{45}+2 q^{44}+11 q^{43}+20 q^{42}-24 q^{41}-31 q^{40}-12 q^{39}-8 q^{38}+45 q^{37}+80 q^{36}+13 q^{35}-61 q^{34}-115 q^{33}-112 q^{32}+55 q^{31}+236 q^{30}+201 q^{29}-q^{28}-291 q^{27}-450 q^{26}-128 q^{25}+426 q^{24}+676 q^{23}+369 q^{22}-409 q^{21}-1059 q^{20}-748 q^{19}+402 q^{18}+1378 q^{17}+1226 q^{16}-177 q^{15}-1719 q^{14}-1811 q^{13}-121 q^{12}+1936 q^{11}+2388 q^{10}+568 q^9-2021 q^8-2925 q^7-1073 q^6+1978 q^5+3332 q^4+1559 q^3-1786 q^2-3585 q-2009+1546 q^{-1} +3683 q^{-2} +2315 q^{-3} -1236 q^{-4} -3642 q^{-5} -2550 q^{-6} +980 q^{-7} +3493 q^{-8} +2629 q^{-9} -682 q^{-10} -3283 q^{-11} -2679 q^{-12} +453 q^{-13} +3017 q^{-14} +2624 q^{-15} -173 q^{-16} -2696 q^{-17} -2585 q^{-18} -85 q^{-19} +2338 q^{-20} +2471 q^{-21} +374 q^{-22} -1902 q^{-23} -2326 q^{-24} -672 q^{-25} +1431 q^{-26} +2109 q^{-27} +921 q^{-28} -909 q^{-29} -1790 q^{-30} -1127 q^{-31} +382 q^{-32} +1420 q^{-33} +1197 q^{-34} +89 q^{-35} -948 q^{-36} -1161 q^{-37} -475 q^{-38} +491 q^{-39} +975 q^{-40} +710 q^{-41} -46 q^{-42} -708 q^{-43} -788 q^{-44} -285 q^{-45} +374 q^{-46} +722 q^{-47} +505 q^{-48} -91 q^{-49} -542 q^{-50} -550 q^{-51} -165 q^{-52} +328 q^{-53} +518 q^{-54} +270 q^{-55} -128 q^{-56} -366 q^{-57} -320 q^{-58} -23 q^{-59} +246 q^{-60} +258 q^{-61} +93 q^{-62} -104 q^{-63} -195 q^{-64} -110 q^{-65} +37 q^{-66} +106 q^{-67} +90 q^{-68} +15 q^{-69} -63 q^{-70} -57 q^{-71} -12 q^{-72} +14 q^{-73} +32 q^{-74} +21 q^{-75} -11 q^{-76} -17 q^{-77} - q^{-78} -3 q^{-79} +3 q^{-80} +9 q^{-81} -2 q^{-82} -5 q^{-83} +2 q^{-84} - q^{-86} +2 q^{-87} -2 q^{-89} + q^{-90} </math>|J6=Not Available|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{40}-2 q^{39}+q^{38}+q^{37}-2 q^{36}+5 q^{35}-9 q^{34}+3 q^{33}+6 q^{32}-7 q^{31}+16 q^{30}-25 q^{29}+7 q^{28}+13 q^{27}-23 q^{26}+40 q^{25}-42 q^{24}+25 q^{23}+17 q^{22}-73 q^{21}+61 q^{20}-56 q^{19}+96 q^{18}+50 q^{17}-179 q^{16}+21 q^{15}-92 q^{14}+251 q^{13}+170 q^{12}-303 q^{11}-114 q^{10}-214 q^9+435 q^8+399 q^7-351 q^6-286 q^5-434 q^4+541 q^3+644 q^2-283 q-374-665 q^{-1} +517 q^{-2} +782 q^{-3} -156 q^{-4} -334 q^{-5} -803 q^{-6} +401 q^{-7} +773 q^{-8} -29 q^{-9} -206 q^{-10} -834 q^{-11} +240 q^{-12} +664 q^{-13} +87 q^{-14} -42 q^{-15} -781 q^{-16} +53 q^{-17} +484 q^{-18} +189 q^{-19} +145 q^{-20} -653 q^{-21} -127 q^{-22} +253 q^{-23} +228 q^{-24} +310 q^{-25} -440 q^{-26} -222 q^{-27} +18 q^{-28} +160 q^{-29} +377 q^{-30} -196 q^{-31} -187 q^{-32} -125 q^{-33} +30 q^{-34} +306 q^{-35} -22 q^{-36} -74 q^{-37} -134 q^{-38} -59 q^{-39} +165 q^{-40} +30 q^{-41} +9 q^{-42} -68 q^{-43} -64 q^{-44} +57 q^{-45} +15 q^{-46} +24 q^{-47} -17 q^{-48} -31 q^{-49} +15 q^{-50} +10 q^{-52} - q^{-53} -9 q^{-54} +4 q^{-55} - q^{-56} +2 q^{-57} -2 q^{-59} + q^{-60} </math> | |
|||
coloured_jones_5 = <math>q^{60}-2 q^{59}+q^{58}+q^{57}-2 q^{56}+q^{55}+3 q^{54}-7 q^{53}+q^{52}+7 q^{51}-4 q^{50}+2 q^{49}+7 q^{48}-18 q^{47}-4 q^{46}+11 q^{45}+2 q^{44}+11 q^{43}+20 q^{42}-24 q^{41}-31 q^{40}-12 q^{39}-8 q^{38}+45 q^{37}+80 q^{36}+13 q^{35}-61 q^{34}-115 q^{33}-112 q^{32}+55 q^{31}+236 q^{30}+201 q^{29}-q^{28}-291 q^{27}-450 q^{26}-128 q^{25}+426 q^{24}+676 q^{23}+369 q^{22}-409 q^{21}-1059 q^{20}-748 q^{19}+402 q^{18}+1378 q^{17}+1226 q^{16}-177 q^{15}-1719 q^{14}-1811 q^{13}-121 q^{12}+1936 q^{11}+2388 q^{10}+568 q^9-2021 q^8-2925 q^7-1073 q^6+1978 q^5+3332 q^4+1559 q^3-1786 q^2-3585 q-2009+1546 q^{-1} +3683 q^{-2} +2315 q^{-3} -1236 q^{-4} -3642 q^{-5} -2550 q^{-6} +980 q^{-7} +3493 q^{-8} +2629 q^{-9} -682 q^{-10} -3283 q^{-11} -2679 q^{-12} +453 q^{-13} +3017 q^{-14} +2624 q^{-15} -173 q^{-16} -2696 q^{-17} -2585 q^{-18} -85 q^{-19} +2338 q^{-20} +2471 q^{-21} +374 q^{-22} -1902 q^{-23} -2326 q^{-24} -672 q^{-25} +1431 q^{-26} +2109 q^{-27} +921 q^{-28} -909 q^{-29} -1790 q^{-30} -1127 q^{-31} +382 q^{-32} +1420 q^{-33} +1197 q^{-34} +89 q^{-35} -948 q^{-36} -1161 q^{-37} -475 q^{-38} +491 q^{-39} +975 q^{-40} +710 q^{-41} -46 q^{-42} -708 q^{-43} -788 q^{-44} -285 q^{-45} +374 q^{-46} +722 q^{-47} +505 q^{-48} -91 q^{-49} -542 q^{-50} -550 q^{-51} -165 q^{-52} +328 q^{-53} +518 q^{-54} +270 q^{-55} -128 q^{-56} -366 q^{-57} -320 q^{-58} -23 q^{-59} +246 q^{-60} +258 q^{-61} +93 q^{-62} -104 q^{-63} -195 q^{-64} -110 q^{-65} +37 q^{-66} +106 q^{-67} +90 q^{-68} +15 q^{-69} -63 q^{-70} -57 q^{-71} -12 q^{-72} +14 q^{-73} +32 q^{-74} +21 q^{-75} -11 q^{-76} -17 q^{-77} - q^{-78} -3 q^{-79} +3 q^{-80} +9 q^{-81} -2 q^{-82} -5 q^{-83} +2 q^{-84} - q^{-86} +2 q^{-87} -2 q^{-89} + q^{-90} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 13]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 13]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[5, 18, 6, 19], X[13, 1, 14, 20], X[19, 15, 20, 14], |
X[5, 18, 6, 19], X[13, 1, 14, 20], X[19, 15, 20, 14], |
||
X[7, 16, 8, 17], X[15, 8, 16, 9], X[17, 6, 18, 7]]</nowiki></pre></td></tr> |
X[7, 16, 8, 17], X[15, 8, 16, 9], X[17, 6, 18, 7]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 13]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 10, -8, 9, -2, 3, -4, 2, -6, 7, -9, 8, -10, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 10, -8, 9, -2, 3, -4, 2, -6, 7, -9, 8, -10, |
|||
5, -7, 6]</nowiki></pre></td></tr> |
5, -7, 6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 13]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 18, 16, 12, 2, 20, 8, 6, 14]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 13]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[6, {-1, -1, -2, 1, 3, -2, -4, 3, 5, -4, 5}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{6, 11}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 13]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 13]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_13_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 13]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 13]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 13 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 13]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_13_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 13]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 13]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 13 2 |
|||
23 + -- - -- - 13 t + 2 t |
23 + -- - -- - 13 t + 2 t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 13]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 - 5 z + 2 z</nowiki></pre></td></tr> |
1 - 5 z + 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 13]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 13]], KnotSignature[Knot[10, 13]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{53, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 13]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 4 6 8 9 2 3 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 13]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 4 6 8 9 2 3 4 |
|||
8 + q - -- + -- - -- + -- - - - 7 q + 5 q - 2 q + q |
8 + q - -- + -- - -- + -- - - - 7 q + 5 q - 2 q + q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 13]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 13]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 -18 -16 -14 2 2 2 4 6 8 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 13]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 -18 -16 -14 2 2 2 4 6 8 |
|||
-2 + q + q - q + q - --- + -- + q - 2 q + q + 2 q - |
-2 + q + q - q + q - --- + -- + q - 2 q + q + 2 q - |
||
10 8 |
10 8 |
||
Line 150: | Line 101: | ||
10 12 14 |
10 12 14 |
||
q + q + q</nowiki></pre></td></tr> |
q + q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 13]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-4 2 4 6 2 2 z 4 2 4 2 4 |
-4 2 4 6 2 2 z 4 2 4 2 4 |
||
-1 + a + a - a + a - z - ---- - 2 a z + z + a z |
-1 + a + a - a + a - z - ---- - 2 a z + z + a z |
||
2 |
2 |
||
a</nowiki></pre></td></tr> |
a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 13]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
-4 2 4 6 2 z 3 5 2 2 z z |
-4 2 4 6 2 z 3 5 2 2 z z |
||
-1 + a - a - a - a - --- + a z - a z + 4 z - ---- + -- - |
-1 + a - a - a - a - --- + a z - a z + 4 z - ---- + -- - |
||
Line 185: | Line 134: | ||
5 7 8 2 8 4 8 9 3 9 |
5 7 8 2 8 4 8 9 3 9 |
||
2 a z + 2 z + 4 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
2 a z + 2 z + 4 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 13]], Vassiliev[3][Knot[10, 13]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-5, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 13]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 1 1 3 1 3 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 13]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 1 1 3 1 3 3 |
|||
- + 5 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
- + 5 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
||
Line 202: | Line 149: | ||
5 3 7 3 9 4 |
5 3 7 3 9 4 |
||
q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 13], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 2 6 8 4 20 14 17 38 15 36 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 2 6 8 4 20 14 17 38 15 36 |
|||
52 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- + |
52 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- + |
||
17 15 14 13 12 11 10 9 8 7 |
17 15 14 13 12 11 10 9 8 7 |
||
Line 216: | Line 162: | ||
7 8 9 10 11 12 |
7 8 9 10 11 12 |
||
3 q - 10 q + 5 q + q - 2 q + q</nowiki></pre></td></tr> |
3 q - 10 q + 5 q + q - 2 q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:35, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 13's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,18,6,19 X13,1,14,20 X19,15,20,14 X7,16,8,17 X15,8,16,9 X17,6,18,7 |
Gauss code | -1, 4, -3, 1, -5, 10, -8, 9, -2, 3, -4, 2, -6, 7, -9, 8, -10, 5, -7, 6 |
Dowker-Thistlethwaite code | 4 10 18 16 12 2 20 8 6 14 |
Conway Notation | [4222] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||||
Length is 11, width is 6, Braid index is 6 |
[{12, 9}, {10, 8}, {9, 11}, {3, 10}, {7, 1}, {8, 6}, {5, 7}, {6, 4}, {2, 5}, {4, 12}, {1, 3}, {11, 2}] |
[edit Notes on presentations of 10 13]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 13"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,18,6,19 X13,1,14,20 X19,15,20,14 X7,16,8,17 X15,8,16,9 X17,6,18,7 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -5, 10, -8, 9, -2, 3, -4, 2, -6, 7, -9, 8, -10, 5, -7, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 18 16 12 2 20 8 6 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[4222] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 6, 11, 6 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 9}, {10, 8}, {9, 11}, {3, 10}, {7, 1}, {8, 6}, {5, 7}, {6, 4}, {2, 5}, {4, 12}, {1, 3}, {11, 2}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 13"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 53, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 13"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-5, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 13. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|