10 87: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 87 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,3,-6,5,-7,10,-2,7,-9,8,-3,4,-5,9,-8,6,-4/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=87|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,3,-6,5,-7,10,-2,7,-9,8,-3,4,-5,9,-8,6,-4/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[10_98]], [[K11a58]], [[K11a165]], [[K11n72]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_98]], [[K11a58]], [[K11a165]], [[K11n72]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>-3</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>-3</td></tr> |
||
Line 73: | Line 37: | ||
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{18}-4 q^{17}+q^{16}+15 q^{15}-20 q^{14}-13 q^{13}+53 q^{12}-31 q^{11}-54 q^{10}+97 q^9-20 q^8-105 q^7+123 q^6+7 q^5-141 q^4+120 q^3+35 q^2-143 q+90+46 q^{-1} -105 q^{-2} +47 q^{-3} +33 q^{-4} -51 q^{-5} +18 q^{-6} +12 q^{-7} -16 q^{-8} +6 q^{-9} +2 q^{-10} -3 q^{-11} + q^{-12} </math> | |
|||
coloured_jones_3 = <math>q^{36}-4 q^{35}+q^{34}+9 q^{33}+5 q^{32}-23 q^{31}-25 q^{30}+43 q^{29}+60 q^{28}-44 q^{27}-127 q^{26}+26 q^{25}+202 q^{24}+36 q^{23}-275 q^{22}-135 q^{21}+317 q^{20}+271 q^{19}-326 q^{18}-413 q^{17}+287 q^{16}+546 q^{15}-205 q^{14}-669 q^{13}+113 q^{12}+747 q^{11}+11 q^{10}-815 q^9-116 q^8+827 q^7+242 q^6-830 q^5-329 q^4+767 q^3+419 q^2-685 q-453+549 q^{-1} +464 q^{-2} -410 q^{-3} -419 q^{-4} +272 q^{-5} +336 q^{-6} -154 q^{-7} -245 q^{-8} +80 q^{-9} +154 q^{-10} -39 q^{-11} -83 q^{-12} +20 q^{-13} +39 q^{-14} -13 q^{-15} -16 q^{-16} +10 q^{-17} +6 q^{-18} -8 q^{-19} +2 q^{-21} +2 q^{-22} -3 q^{-23} + q^{-24} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{18}-4 q^{17}+q^{16}+15 q^{15}-20 q^{14}-13 q^{13}+53 q^{12}-31 q^{11}-54 q^{10}+97 q^9-20 q^8-105 q^7+123 q^6+7 q^5-141 q^4+120 q^3+35 q^2-143 q+90+46 q^{-1} -105 q^{-2} +47 q^{-3} +33 q^{-4} -51 q^{-5} +18 q^{-6} +12 q^{-7} -16 q^{-8} +6 q^{-9} +2 q^{-10} -3 q^{-11} + q^{-12} </math>|J3=<math>q^{36}-4 q^{35}+q^{34}+9 q^{33}+5 q^{32}-23 q^{31}-25 q^{30}+43 q^{29}+60 q^{28}-44 q^{27}-127 q^{26}+26 q^{25}+202 q^{24}+36 q^{23}-275 q^{22}-135 q^{21}+317 q^{20}+271 q^{19}-326 q^{18}-413 q^{17}+287 q^{16}+546 q^{15}-205 q^{14}-669 q^{13}+113 q^{12}+747 q^{11}+11 q^{10}-815 q^9-116 q^8+827 q^7+242 q^6-830 q^5-329 q^4+767 q^3+419 q^2-685 q-453+549 q^{-1} +464 q^{-2} -410 q^{-3} -419 q^{-4} +272 q^{-5} +336 q^{-6} -154 q^{-7} -245 q^{-8} +80 q^{-9} +154 q^{-10} -39 q^{-11} -83 q^{-12} +20 q^{-13} +39 q^{-14} -13 q^{-15} -16 q^{-16} +10 q^{-17} +6 q^{-18} -8 q^{-19} +2 q^{-21} +2 q^{-22} -3 q^{-23} + q^{-24} </math>|J4=<math>q^{60}-4 q^{59}+q^{58}+9 q^{57}-q^{56}+2 q^{55}-35 q^{54}-10 q^{53}+50 q^{52}+38 q^{51}+59 q^{50}-142 q^{49}-149 q^{48}+41 q^{47}+156 q^{46}+391 q^{45}-146 q^{44}-466 q^{43}-343 q^{42}+20 q^{41}+1047 q^{40}+406 q^{39}-470 q^{38}-1099 q^{37}-948 q^{36}+1348 q^{35}+1450 q^{34}+544 q^{33}-1411 q^{32}-2611 q^{31}+512 q^{30}+2056 q^{29}+2401 q^{28}-500 q^{27}-3959 q^{26}-1275 q^{25}+1478 q^{24}+4126 q^{23}+1389 q^{22}-4268 q^{21}-3117 q^{20}-28 q^{19}+5059 q^{18}+3417 q^{17}-3695 q^{16}-4449 q^{15}-1756 q^{14}+5267 q^{13}+5060 q^{12}-2692 q^{11}-5219 q^{10}-3322 q^9+4901 q^8+6185 q^7-1368 q^6-5337 q^5-4613 q^4+3810 q^3+6521 q^2+234 q-4448-5236 q^{-1} +1987 q^{-2} +5610 q^{-3} +1575 q^{-4} -2600 q^{-5} -4632 q^{-6} +189 q^{-7} +3592 q^{-8} +1882 q^{-9} -709 q^{-10} -2969 q^{-11} -655 q^{-12} +1544 q^{-13} +1209 q^{-14} +251 q^{-15} -1302 q^{-16} -537 q^{-17} +396 q^{-18} +411 q^{-19} +326 q^{-20} -385 q^{-21} -188 q^{-22} +60 q^{-23} +37 q^{-24} +145 q^{-25} -88 q^{-26} -22 q^{-27} +16 q^{-28} -29 q^{-29} +40 q^{-30} -20 q^{-31} +5 q^{-32} +8 q^{-33} -14 q^{-34} +8 q^{-35} -4 q^{-36} +2 q^{-37} +2 q^{-38} -3 q^{-39} + q^{-40} </math>|J5=<math>q^{90}-4 q^{89}+q^{88}+9 q^{87}-q^{86}-4 q^{85}-10 q^{84}-20 q^{83}-3 q^{82}+53 q^{81}+57 q^{80}+9 q^{79}-65 q^{78}-151 q^{77}-129 q^{76}+63 q^{75}+320 q^{74}+351 q^{73}+81 q^{72}-395 q^{71}-767 q^{70}-571 q^{69}+300 q^{68}+1236 q^{67}+1361 q^{66}+362 q^{65}-1364 q^{64}-2524 q^{63}-1744 q^{62}+845 q^{61}+3444 q^{60}+3784 q^{59}+944 q^{58}-3570 q^{57}-6123 q^{56}-3944 q^{55}+2142 q^{54}+7801 q^{53}+7945 q^{52}+1232 q^{51}-7936 q^{50}-12002 q^{49}-6459 q^{48}+5733 q^{47}+15075 q^{46}+12790 q^{45}-987 q^{44}-16028 q^{43}-19243 q^{42}-5945 q^{41}+14406 q^{40}+24602 q^{39}+14131 q^{38}-10120 q^{37}-28002 q^{36}-22616 q^{35}+3740 q^{34}+29233 q^{33}+30312 q^{32}+3785 q^{31}-28199 q^{30}-36688 q^{29}-11811 q^{28}+25764 q^{27}+41502 q^{26}+19260 q^{25}-22173 q^{24}-44870 q^{23}-26171 q^{22}+18380 q^{21}+47190 q^{20}+31969 q^{19}-14339 q^{18}-48648 q^{17}-37297 q^{16}+10504 q^{15}+49507 q^{14}+41817 q^{13}-6259 q^{12}-49591 q^{11}-46135 q^{10}+1776 q^9+48605 q^8+49590 q^7+3628 q^6-46021 q^5-52288 q^4-9434 q^3+41535 q^2+53054 q+15615-34918 q^{-1} -51744 q^{-2} -21076 q^{-3} +26730 q^{-4} +47626 q^{-5} +25016 q^{-6} -17662 q^{-7} -41084 q^{-8} -26662 q^{-9} +9036 q^{-10} +32799 q^{-11} +25672 q^{-12} -1989 q^{-13} -23822 q^{-14} -22464 q^{-15} -2828 q^{-16} +15585 q^{-17} +17807 q^{-18} +5172 q^{-19} -8907 q^{-20} -12742 q^{-21} -5576 q^{-22} +4252 q^{-23} +8230 q^{-24} +4732 q^{-25} -1508 q^{-26} -4774 q^{-27} -3377 q^{-28} +174 q^{-29} +2460 q^{-30} +2115 q^{-31} +284 q^{-32} -1133 q^{-33} -1170 q^{-34} -306 q^{-35} +453 q^{-36} +563 q^{-37} +213 q^{-38} -137 q^{-39} -255 q^{-40} -129 q^{-41} +55 q^{-42} +92 q^{-43} +40 q^{-44} +11 q^{-45} -27 q^{-46} -41 q^{-47} +9 q^{-48} +14 q^{-49} -7 q^{-50} +11 q^{-51} +3 q^{-52} -12 q^{-53} +2 q^{-54} +4 q^{-55} -4 q^{-56} +2 q^{-57} +2 q^{-58} -3 q^{-59} + q^{-60} </math>|J6=Not Available|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{60}-4 q^{59}+q^{58}+9 q^{57}-q^{56}+2 q^{55}-35 q^{54}-10 q^{53}+50 q^{52}+38 q^{51}+59 q^{50}-142 q^{49}-149 q^{48}+41 q^{47}+156 q^{46}+391 q^{45}-146 q^{44}-466 q^{43}-343 q^{42}+20 q^{41}+1047 q^{40}+406 q^{39}-470 q^{38}-1099 q^{37}-948 q^{36}+1348 q^{35}+1450 q^{34}+544 q^{33}-1411 q^{32}-2611 q^{31}+512 q^{30}+2056 q^{29}+2401 q^{28}-500 q^{27}-3959 q^{26}-1275 q^{25}+1478 q^{24}+4126 q^{23}+1389 q^{22}-4268 q^{21}-3117 q^{20}-28 q^{19}+5059 q^{18}+3417 q^{17}-3695 q^{16}-4449 q^{15}-1756 q^{14}+5267 q^{13}+5060 q^{12}-2692 q^{11}-5219 q^{10}-3322 q^9+4901 q^8+6185 q^7-1368 q^6-5337 q^5-4613 q^4+3810 q^3+6521 q^2+234 q-4448-5236 q^{-1} +1987 q^{-2} +5610 q^{-3} +1575 q^{-4} -2600 q^{-5} -4632 q^{-6} +189 q^{-7} +3592 q^{-8} +1882 q^{-9} -709 q^{-10} -2969 q^{-11} -655 q^{-12} +1544 q^{-13} +1209 q^{-14} +251 q^{-15} -1302 q^{-16} -537 q^{-17} +396 q^{-18} +411 q^{-19} +326 q^{-20} -385 q^{-21} -188 q^{-22} +60 q^{-23} +37 q^{-24} +145 q^{-25} -88 q^{-26} -22 q^{-27} +16 q^{-28} -29 q^{-29} +40 q^{-30} -20 q^{-31} +5 q^{-32} +8 q^{-33} -14 q^{-34} +8 q^{-35} -4 q^{-36} +2 q^{-37} +2 q^{-38} -3 q^{-39} + q^{-40} </math> | |
|||
coloured_jones_5 = <math>q^{90}-4 q^{89}+q^{88}+9 q^{87}-q^{86}-4 q^{85}-10 q^{84}-20 q^{83}-3 q^{82}+53 q^{81}+57 q^{80}+9 q^{79}-65 q^{78}-151 q^{77}-129 q^{76}+63 q^{75}+320 q^{74}+351 q^{73}+81 q^{72}-395 q^{71}-767 q^{70}-571 q^{69}+300 q^{68}+1236 q^{67}+1361 q^{66}+362 q^{65}-1364 q^{64}-2524 q^{63}-1744 q^{62}+845 q^{61}+3444 q^{60}+3784 q^{59}+944 q^{58}-3570 q^{57}-6123 q^{56}-3944 q^{55}+2142 q^{54}+7801 q^{53}+7945 q^{52}+1232 q^{51}-7936 q^{50}-12002 q^{49}-6459 q^{48}+5733 q^{47}+15075 q^{46}+12790 q^{45}-987 q^{44}-16028 q^{43}-19243 q^{42}-5945 q^{41}+14406 q^{40}+24602 q^{39}+14131 q^{38}-10120 q^{37}-28002 q^{36}-22616 q^{35}+3740 q^{34}+29233 q^{33}+30312 q^{32}+3785 q^{31}-28199 q^{30}-36688 q^{29}-11811 q^{28}+25764 q^{27}+41502 q^{26}+19260 q^{25}-22173 q^{24}-44870 q^{23}-26171 q^{22}+18380 q^{21}+47190 q^{20}+31969 q^{19}-14339 q^{18}-48648 q^{17}-37297 q^{16}+10504 q^{15}+49507 q^{14}+41817 q^{13}-6259 q^{12}-49591 q^{11}-46135 q^{10}+1776 q^9+48605 q^8+49590 q^7+3628 q^6-46021 q^5-52288 q^4-9434 q^3+41535 q^2+53054 q+15615-34918 q^{-1} -51744 q^{-2} -21076 q^{-3} +26730 q^{-4} +47626 q^{-5} +25016 q^{-6} -17662 q^{-7} -41084 q^{-8} -26662 q^{-9} +9036 q^{-10} +32799 q^{-11} +25672 q^{-12} -1989 q^{-13} -23822 q^{-14} -22464 q^{-15} -2828 q^{-16} +15585 q^{-17} +17807 q^{-18} +5172 q^{-19} -8907 q^{-20} -12742 q^{-21} -5576 q^{-22} +4252 q^{-23} +8230 q^{-24} +4732 q^{-25} -1508 q^{-26} -4774 q^{-27} -3377 q^{-28} +174 q^{-29} +2460 q^{-30} +2115 q^{-31} +284 q^{-32} -1133 q^{-33} -1170 q^{-34} -306 q^{-35} +453 q^{-36} +563 q^{-37} +213 q^{-38} -137 q^{-39} -255 q^{-40} -129 q^{-41} +55 q^{-42} +92 q^{-43} +40 q^{-44} +11 q^{-45} -27 q^{-46} -41 q^{-47} +9 q^{-48} +14 q^{-49} -7 q^{-50} +11 q^{-51} +3 q^{-52} -12 q^{-53} +2 q^{-54} +4 q^{-55} -4 q^{-56} +2 q^{-57} +2 q^{-58} -3 q^{-59} + q^{-60} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 87]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 87]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 16, 1, 15], |
|||
X[16, 7, 17, 8], X[6, 19, 7, 20], X[8, 12, 9, 11], X[18, 13, 19, 14], |
X[16, 7, 17, 8], X[6, 19, 7, 20], X[8, 12, 9, 11], X[18, 13, 19, 14], |
||
X[12, 17, 13, 18], X[2, 10, 3, 9]]</nowiki></pre></td></tr> |
X[12, 17, 13, 18], X[2, 10, 3, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 87]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 3, -6, 5, -7, 10, -2, 7, -9, 8, -3, 4, -5, 9, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 3, -6, 5, -7, 10, -2, 7, -9, 8, -3, 4, -5, 9, |
|||
-8, 6, -4]</nowiki></pre></td></tr> |
-8, 6, -4]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 87]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 14, 16, 2, 8, 18, 20, 12, 6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 87]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, 2, -1, -3, 2, -3, 2, -3, -3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 87]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 87]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_87_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 87]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 87]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 9 18 2 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 87]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_87_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 87]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 87]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 9 18 2 3 |
|||
23 - -- + -- - -- - 18 t + 9 t - 2 t |
23 - -- + -- - -- - 18 t + 9 t - 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 87]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 |
|||
1 - 3 z - 2 z</nowiki></pre></td></tr> |
1 - 3 z - 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 87], Knot[10, 98], Knot[11, Alternating, 58], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 87], Knot[10, 98], Knot[11, Alternating, 58], |
|||
Knot[11, Alternating, 165], Knot[11, NonAlternating, 72]}</nowiki></pre></td></tr> |
Knot[11, Alternating, 165], Knot[11, NonAlternating, 72]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 87]], KnotSignature[Knot[10, 87]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{81, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 87]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 6 10 2 3 4 5 6 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 87]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 6 10 2 3 4 5 6 |
|||
13 + q - -- + -- - -- - 13 q + 13 q - 10 q + 7 q - 4 q + q |
13 + q - -- + -- - -- - 13 q + 13 q - 10 q + 7 q - 4 q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki></pre></td></tr> |
q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 87]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 87]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 -8 -6 3 2 2 4 8 10 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 87]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 -8 -6 3 2 2 4 8 10 |
|||
-2 + q - q + q + q - -- + -- + q + 2 q + 4 q - 2 q - |
-2 + q - q + q + q - -- + -- + q + 2 q + 4 q - 2 q - |
||
4 2 |
4 2 |
||
Line 150: | Line 101: | ||
16 18 |
16 18 |
||
2 q + q</nowiki></pre></td></tr> |
2 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 87]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 |
|||
-4 3 2 2 z z 2 2 4 z 2 z |
-4 3 2 2 z z 2 2 4 z 2 z |
||
-2 - a + -- + a - 4 z + -- + -- + 2 a z - 3 z + -- - ---- + |
-2 - a + -- + a - 4 z + -- + -- + 2 a z - 3 z + -- - ---- + |
||
Line 163: | Line 113: | ||
2 |
2 |
||
a</nowiki></pre></td></tr> |
a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 87]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
|||
-4 3 2 z z 3 2 z z 3 z |
-4 3 2 z z 3 2 z z 3 z |
||
-2 - a - -- - a - -- - - + a z + a z + 7 z + -- + -- + ---- + |
-2 - a - -- - a - -- - - + a z + a z + 7 z + -- + -- + ---- + |
||
Line 194: | Line 143: | ||
3 a 4 2 3 a |
3 a 4 2 3 a |
||
a a a a</nowiki></pre></td></tr> |
a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 87]], Vassiliev[3][Knot[10, 87]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 87]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7 1 2 1 4 2 6 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 87]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7 1 2 1 4 2 6 4 |
|||
- + 7 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 7 q t + |
- + 7 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 7 q t + |
||
q 9 4 7 3 5 3 5 2 3 2 3 q t |
q 9 4 7 3 5 3 5 2 3 2 3 q t |
||
Line 209: | Line 156: | ||
9 5 11 5 13 6 |
9 5 11 5 13 6 |
||
q t + 3 q t + q t</nowiki></pre></td></tr> |
q t + 3 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 87], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 3 2 6 16 12 18 51 33 47 105 46 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 3 2 6 16 12 18 51 33 47 105 46 |
|||
90 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - --- + -- - |
90 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - --- + -- - |
||
11 10 9 8 7 6 5 4 3 2 q |
11 10 9 8 7 6 5 4 3 2 q |
||
Line 224: | Line 170: | ||
17 18 |
17 18 |
||
4 q + q</nowiki></pre></td></tr> |
4 q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:38, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 87's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,4,11,3 X14,6,15,5 X20,16,1,15 X16,7,17,8 X6,19,7,20 X8,12,9,11 X18,13,19,14 X12,17,13,18 X2,10,3,9 |
Gauss code | 1, -10, 2, -1, 3, -6, 5, -7, 10, -2, 7, -9, 8, -3, 4, -5, 9, -8, 6, -4 |
Dowker-Thistlethwaite code | 4 10 14 16 2 8 18 20 12 6 |
Conway Notation | [.22.20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{3, 10}, {2, 4}, {1, 3}, {6, 2}, {11, 8}, {9, 7}, {8, 5}, {10, 6}, {12, 9}, {4, 11}, {5, 12}, {7, 1}] |
[edit Notes on presentations of 10 87]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 87"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,4,11,3 X14,6,15,5 X20,16,1,15 X16,7,17,8 X6,19,7,20 X8,12,9,11 X18,13,19,14 X12,17,13,18 X2,10,3,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, 3, -6, 5, -7, 10, -2, 7, -9, 8, -3, 4, -5, 9, -8, 6, -4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 16 2 8 18 20 12 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.22.20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 10}, {2, 4}, {1, 3}, {6, 2}, {11, 8}, {9, 7}, {8, 5}, {10, 6}, {12, 9}, {4, 11}, {5, 12}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 87"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 81, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_98, K11a58, K11a165, K11n72,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 87"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_98, K11a58, K11a165, K11n72,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (0, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 87. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|